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SUMMARY

Mammalian models of longevity are related
primarily to caloric restriction and alterations in
metabolism. We examined mice in which type
5 adenylyl cyclase (AC5) is knocked out (AC5
KO) and which are resistant to cardiac stress
and have increased median lifespan of �30%.
AC5 KO mice are protected from reduced bone
density and susceptibility to fractures of aging.
Old AC5 KO mice are also protected from ag-
ing-induced cardiomyopathy, e.g., hypertrophy,
apoptosis, fibrosis, and reduced cardiac func-
tion. Using a proteomic-based approach, we
demonstrate a significant activation of the Raf/
MEK/ERK signaling pathway and upregulation
of cell protective molecules, including superox-
ide dismutase. Fibroblasts isolated from AC5
KO mice exhibited ERK-dependent resistance
to oxidative stress. These results suggest that
AC is a fundamentally important mechanism
regulating lifespan and stress resistance.

INTRODUCTION

Caloric restriction (CR) is a well-recognized mechanism

mediating lifespan extension from yeast to mammals (Sin-

clair, 2005). Other mammalian models of longevity are

related to CR through effects on metabolism, e.g., growth

hormone (GH)/GH receptor (Bluher et al., 2003; Brown-

Borg et al., 1996), and either those involved in the insulin

signaling pathway or insulin-like growth factor receptors,

and stimulation of foxo family transcription factors, result-

ing in prolongation of the maximum lifespan (Kenyon,

2005; Liang et al., 2003).

The current investigation reports a novel mammalian

model of longevity based on interruption of beta-adrenergic

receptor (b-AR) signaling at the level of AC, specifically

disruption of the AC5 gene, an AC isoform predominantly
expressed in the heart and brain. AC is a key enzyme that

catalyzes the synthesis of cAMP from ATP. cAMP acti-

vates protein kinase A (PKA; Walsh et al., 1968) and regu-

lates the function of multiple proteins and transcriptional

factors, such as CREB and ICER (Houslay and Kolch,

2000). AC also plays a pivotal role in b-AR signaling. At

least nine membrane-bound isoforms of AC (AC1�AC9)

exist, with diverse tissue distribution, biochemical proper-

ties, and specific catalytic activities (Hanoune and Defer,

2001). We generated a genetically engineered mouse

model in which AC5 is knocked out (AC5 KO; Okumura

et al., 2003b). Unexpectedly, AC5 KO mice live signifi-

cantly longer than control littermates. The hearts of these

mice also demonstrate resistance to stresses, including

pressure overload and catecholamine stimulation, in

terms of maintenance of cardiac function and protection

against apoptosis (Okumura et al., 2003c).

Another potentially important clinical correlation in-

volves insights into cardioprotection for heart failure since

there is considerable current interest in inhibition of b-AR

signaling and AC for the treatment of heart failure (Bristow,

2000). In view of the parallel features of heart failure

protection and longevity, it is interesting to speculate

that the proteins in the b-AR signaling pathway may be

involved in both longevity and stress resistance.

In this study, we demonstrate that AC5 KO mice exhi-

bit significantly extended median/maximum lifespan, re-

tarded aging phenotypes in the heart and bone, and

increased stress resistance. Using unbiased proteomic

approaches, we found that AC5 KO leads to upregulation

of the Raf/MEK/ERK signaling pathway, which in turn

mediates upregulation of superoxide dismutase (SOD),

an important mechanism mediating lifespan extension

and stress resistance.

RESULTS

AC5 KO Mice Exhibit Extended Lifespan

To determine the lifespan of AC5 KO mice, we first con-

ducted a retrospective study comparing the survival rate
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of WT and AC5 KO mice, which were all alive at 17 months

(Figure 1 insert). Of these, only 16% of WT were still alive

at 30 months of age, whereas 92% of AC5 KO mice re-

mained alive at this time. Next we conducted an antero-

spective study, which is summarized by the Kaplan-Meier

survival analysis. This study revealed that the median life-

span was increased by 8 months (from 25 to 33 months),

p < 0.01, and the maximum lifespan was extended by

4 months (from 33 to 37 months), p < 0.02, in AC5 KO

mice (Figure 1). Increased lifespan was similar in both

males and females. For comparisons of AC5 KO and

WT, young mice (3–6 months) and old mice (20–30

months) were studied.

Bone Quality Is Preserved in Old AC5 KO Mice

Bone integrity was only studied in female mice. Necrop-

sies revealed weakened bone structure with susceptibil-

ity to fractures in old WT mice, but not in old AC5 KO

mice. Radiographs indicated reduced bone density, heal-

ing stress fractures, reduced calcification, and absence

of the fibula in old WT mice (Figure 2A). In contrast,

bones appeared normal in radiographs of old AC5 KO

mice (Figure 2A). The differences in bone structure

were quantified by torsional mechanical testing (Mani-

grasso and O’Connor, 2004). Figure 2B shows three indi-

ces of (femur) bone strength in WT and AC5 KO mice.

The bone peak torque, shear modulus, and shear stress

were greater in AC5 KO mice, demonstrating that the

bone in aging AC5 KO mice is stronger and more resis-

tant to stress.

AC5 KO Mice Have Lower Body Weights and Lower

GH Levels

Reduced body weight (BW) and GH signaling have been

observed in CR mice and several other genetic mutations

(Al-Regaiey et al., 2005; Bartke and Brown-Borg, 2004;

Coschigano et al., 2000; Miller, 1999; Miller et al., 2002)

that lead to increased lifespan. In order to determine

whether knocking out AC5 affects mouse BW and GH sig-

naling, we measured BW and GH levels in AC5 KO mice.

Body weights were found to be similar in young AC5 KO

and WT mice, but significantly decreased in old AC5 KO

compared to old WT mice (p < 0.05). A significant reduc-

tion (p < 0.05) in the GH level was also observed in AC5

KO mice (Figures S1A and S1B). In view of the lower

body weights in AC5 KO mice, we examined whether

CR contributes to the extended lifespan in AC5 KO

mice. We measured food intake in young AC5 KO mice

and WT controls over a 3 week period. The data demon-

strated that AC5 KO mice tend to eat more than WT.

Thus, lifespan extension in AC5 KO is not caused by re-

duced caloric intake in young animals. It is still possible

that older AC5 KO eat less (Figure S1C).

AC5 KO Mice Are Protected

from Aging-Induced Cardiomyopathy

We measured the key features of aging cardiomyopathy

including left ventricular (LV) weight/BW (LVW/BW) ratio,
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myocyte size, LV ejection fraction (LVEF), apoptosis, and

fibrosis. LVW/BW ratio (Figure 3A), an index of LV hyper-

trophy (LVH), was not different between young WT and

AC5 KO mice but was significantly elevated in old WT

(p < 0.05) and not in old AC5 KO mice. Myocyte cross-

sectional area was significantly less, p < 0.02, in old AC5

KO (259.5 ± 4.9 mm2) than in old WT mice (282.9 ± 5.2

mm2), confirming that less LVH developed in old AC5 KO

mice. LVEF (Figure 3B), an index of LV systolic function,

was significantly higher in old AC5 KO mice compared

to old WT mice (p < 0.05), indicating better LV function.

Myocardial fibrosis was increased in old versus young

WT, p < 0.05, but was not increased in old AC5 KO mice

(Figure 3D).

Aging cardiomyopathy is also characterized by in-

creased apoptosis, which was also observed in the pres-

ent study in the old WT mice, but not in the old AC5 KO

mice (Figure 3C). One important signaling pathway

mediating cell survival involves ERK signaling (see below).

Several downstream apoptosis-related elements of this

pathway, e.g., RSK, p-Bad, and Bcl-xl, were significantly

increased in heart, kidney, and brain of AC5 KO mice

(Figure S2A). Other antiapoptotic markers such as XIAP

and Hsp70 were also increased in AC5 KO mice

(Figure S2B), consistent with protection from apoptosis

in AC5 KO mice.

Figure 1. Extended Lifespan in AC5 KO Mice

A retrospective study of WT (n = 25) and AC5 KO mice (n = 13) demon-

strated significant differences in longevity between WT and AC5 KO,

which were alive at 17 months (insert). At 30 months, only 16% of

WT mice survived, whereas 92% of AC5 KO mice were still alive.

The Kaplan-Meier survival curve shows significantly increased sur-

vival, p < 0.01, of AC5 KO mice (n = 14) compared to their WT litter-

mates (n = 17) studied anterospectively from birth to death. The dotted

line indicates the time of 50% survival. Roughly 50% of WT mice died

by 25 months. In striking contrast, 50% of AC5 KO mice died by 33

months. These differences are significant, p < 0.01. The maximum sur-

vival was also significantly different, p < 0.02, by the chi-square test.

Data for males and females were pooled since there were no gender

differences for survival.



Figure 2. Bone Integrity Is Maintained in

Aging AC5 KO Mice

The data obtained in (A) and (B) were from six

female AC5 KO and five female WT mice at

20–25 months old. (A) Radiographs taken of

the tibia of WT and AC5 KO mice. The WT

mice exhibit reduced bone density, apparent

healing stress fractures, reduced calcification,

and absence of the fibula. This was not

observed in AC5 KO mice of the same age. In

this example, both the WT and AC5 KO mice

were 23 months old.

(B) Three indices of bone strength and integrity

comparing old WT (open bars) and old AC5 KO

(solid bars) mice. All three indices—peak torque

(left), shear modulus (middle), and shear stress

(right)—were measured by torsional mechanical

testing and were significantly greater (*p < 0.05)

in AC5 KO, demonstrating that the bone in AC5

KO is stronger and more resistant to stress,

which supports the example shown in Figure 2A.

Data are expressed as mean ± SEM.
AC5 KO Mice Are Resistant to Oxidative Stress

To test the hypothesis that knocking out AC5 renders

cells resistant to environmental stresses, we investigated

whether neonatal AC5 KO cardiac myocytes and fibro-

blasts from AC5 KO embryos and adult AC5 KO mice

are resistant to oxidative (H2O2) and DNA (UV light) dam-

age. Cardiac myocytes were isolated from 1-day-old

neonates of homozygous AC5 KO mice or WT mice.

After culture for 48 hr, cells were treated by H2O2 (25,

50, and 100 mM) or UV light (10 and 25 mJ/cm2) for

24 hr. Cell viability was higher in AC5 KO than in WT my-

ocytes (Figure 4A, left upper and lower panels). Mouse

embryonic fibroblasts (MEFs) were isolated from 13 day

embryos of homozygous AC5 KO mice or WT mice.

The third passage cells were treated by H2O2 (50, 100,

200, and 400 mM) or UV light (25 and 100 mJ/cm2) for

24 hr. The proportion of surviving cells was higher in

AC5 KO than in WT MEFs (Figure 4A, right upper and

lower panels). Furthermore, fibroblasts were grown

from tail skin of adult AC5 KO and WT mice. The third

passage cells were exposed to 25 mM H2O2 or 25 mJ/

cm2 UV for 24 hr. Similar to MEFs, WT fibroblasts were

more sensitive to H2O2 and UV light, whereas AC5 KO fi-

broblasts displayed increased resistance to both H2O2

and UV light (data not shown). H2O2- or UV-light-treated

MEFs and adult fibroblasts were also subjected to apo-

ptosis analysis. Apoptosis was lower in AC5 KO than in

WT MEFs (Figure 4B, left) and adult fibroblasts (Fig-

ure 4B, right). These results indicate that disruption of

AC5 enhances resistance to oxidative stress in vitro. In

order to examine the mechanisms which confer resis-

tance to oxidative stress, we examined the levels of the

antioxidant MnSOD in heart, kidney, brain, and bone by

western blotting. The protein level of MnSOD was in-

creased in the heart, kidney, and brain of aging AC5

KO mice, providing further evidence that the AC5 KO

mice are resistant to oxidative damage (Figure 4C).
The Raf/MEK/ERK Signaling Is Stimulated

in AC5 KO Mice

To investigate the molecular mechanisms mediating lon-

gevity in AC5 KO mice, we utilized an unbiased proteomic

analysis to search for novel proteins that are altered in AC5

KO mice. We initially separated proteins from brain tissue

using 2D gel electrophoresis and compared the gel pat-

terns of WT and AC5 KO mice (20 months old). We found

that nine proteins were upregulated, five downregulated,

and three altered by posttranslational modifications in

AC5 KO mice (Table S1). Among these changes, we are in-

terested in the alteration which is shown in Figure 5A; the

pattern of spots in the circles was different between WT

and AC5 KO. The two spots in WT and one in AC5 KO

were observed, and all of them were identified as mito-

gen-activated protein kinase kinase 1 (MEK1; Figure S3)

using peptide mapping by mass spectrometry and se-

quence database searches, which suggests the alteration

of MEK1 posttranslational modification (most likely phos-

phorylation) in AC5 KO mice.

Since we observed alterations of MEK1 in AC5 KO mice

from 2D gel electrophoresis, we examined the levels of

p-MEK by western blotting in the heart. p-MEK was con-

firmed to be elevated in the heart of AC5 KO mice (Fig-

ure 5B). Furthermore, we examined its upstream molecule,

Raf-1, and its downstream molecule, ERK, by western

blotting. We found that phosphorylation of ERK was signif-

icantly increased in the heart and kidney (Figure 5C). Phos-

phorylation of Raf-1 was also elevated (data not shown).

The phosphorylation of ERK was also elevated in MEFs

isolated from AC5 KO mice (Figure 5C, right). Therefore,

Raf/MEK/ERK signaling is upregulated in AC5 KO mice.

ERK Mediates Resistance to Oxidative Stress

and Upregulation of SOD in AC5 KO Mice

We hypothesized that knocking out AC5 enhances cellular

resistance to oxidative stress through activation of ERK.
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To test this hypothesis, we inhibited ERK with PD98059

(the levels of p-ERK were significantly reduced after treat-

ment; data not shown), a specific inhibitor, to examine

whether inhibition of ERK reduces oxidative stress toler-

ance in AC5 KO mice. AC5 KO MEFs were pretreated

with PD98059 (30 mM in 0.04% DMSO and 60 mM in

0.08% DMSO) for 30 min before 24 hr incubation with 50

mM or 100 mM H2O2. The proportion of surviving cells pre-

treated with PD98059 was lower than the cells with vehicle

treatment alone (Figure 5D, left and middle), indicating

a possible role of ERK activation in mediating resistance

to oxidative stress. To further confirm whether ERK is in-

volved in stress resistance downstream of AC5, we used

RNAi to knock down ERK1 and ERK2 in AC5 KO MEFs

(the levels of p-ERK were significantly reduced after

treatment; data not shown), and then cells were treated

with 400 mM H2O2. In an ERK knockdown experiment,

cell viability was reduced (Figure 5D, right). As shown in

Figure 5D, the reduction of tolerance to oxidative stress

was more in AC5 KO than in WT. To further test whether

MnSOD could be a downstream enzyme of the ERK sig-

naling pathway, we determined the level of MnSOD in

MEFs from WT and AC5 KO mice treated with PD98059

and ERK siRNA. As shown in Figure 5E, the level of

MnSOD was reduced in MEFs pretreated with PD98059

Figure 3. AC5 KO Mice Are Protected from Aging Cardiomy-

opathy

Comparison of LVW/BW (A), LV ejection fraction (B), LV apoptosis (C),

and LV fibrosis (D) in AC5 WT and KO, young (3–6 months, n = 4–9) and

old (20–30 months, n = 4–9). There were no significant differences

between young WT and young AC5 KO mice. However, all of the

four parameters were significantly different in old WT compared with

young WT (*p < 0.05), characteristic of aging cardiomyopathy. In con-

trast, none of the four parameters were different in old versus young

AC5 KO, but all four parameters were significantly different in old

AC5 KO versus old WT (**p < 0.05). For panels (A)–(D), all data are

expressed as mean ± SEM.
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(left) and in MEFs with ERK siRNA (right), suggesting

that ERK plays an essential role in mediating upregulation

of MnSOD.

Overexpression of Mammalian ERK2 in Budding

Yeast Results in Extended Lifespan and Resistance

to Heat Shock and Oxidative Stress

To study the effects of the Raf/MEK/ERK pathway on

longevity, we overexpressed human ERK2 in yeast

(Figure 6A) since expression of human ERK in yeast can

partially substitute for the absence of KSS1, the ortholog

of ERK (Atienza et al., 2000). We found that ERK2 overex-

pressing yeast strains were resistant to heat shock and

oxidative stress (Figure 6B), and chronological lifespan

was longer compared to a WT strain that does not express

ERK2, e.g., the survival at 5 days in the strain with ERK2

overexpression was 62 ± 3.2%, significantly greater, p <

0.05, than WT (51 ± 4.4%; Figure 6C). We expressed

ERK2 also in strains that have a mutation in the gene en-

coding adenylyl cyclase, CYR1 (mutant: cyr1-1; Fabrizio

et al., 2001). The cyr1-1 mutant strain expressing ERK2

was not more resistant to heat shock and oxidative stress

compared to the nonERK2-expressing cyr1-1 mutant

strain (Figure 6B), and also the chronological lifespan

was not increased significantly (Figure 6C). Furthermore,

when we deleted KSS1 (ERK homolog gene) from the

yeast, the yeast strains lacking Kss1p showed increased

sensitivity to heat shock and oxidative stress (Figure 6D)

and a shorter lifespan, e.g., the survival at 5 days in the

strain lacking Kss1p was 36 ± 1.5%, significantly less,

p < 0.05, than WT (53 ± 2.1%; Figure 6E). Lack of Kss1p

also increases sensitivity to heat shock and oxidative

stress in a mutant cyr1-1 strain (Figure 6D) with a concom-

itant decrease in chronological lifespan, e.g., the survival

at 5 days in a mutant cyr1-1 strain lacking Kss1p was

69 ± 2.5%, significantly less, p < 0.05, than the cyr1-1

strain (90 ± 5.2%; Figure 6E). The data for all survival

results at 5 days and statistics are included in Table S2.

These results are consistent with the notion that the corre-

sponding Raf/MEK/ERK signaling pathway in yeast

(Ste11/Ste7/Kss1) interacts genetically with the Cyr1/

cAMP/PKA pathway in mediating regulation of lifespan

and stress resistance. It should be noted that our results

also suggest that the effect of Cry1-1 mutation could be

mediated by Kss1-independent mechanisms as well.

DISCUSSION

The central finding in this work is that AC5 KO mice exhibit

extended lifespan. Our observation for the first time indi-

cates that AC is not only a fundamentally important mech-

anism regulating lifespan in a wide variety of organisms

but also provides a novel molecular mechanism by which

genetic deletion of AC5 leads to this lifespan extension.

AC is the keystone of sympathetic transmission in b-AR

signaling in myocardium. The sympathetic nervous sys-

tem is designed to respond to stress. The activity of

the sympathetic nervous system and b-AR stimulation



Figure 4. AC5 KO Mice Are Resistant to Oxidative Stress

(A) Cell viability was evaluated in response to oxidative stress in neonatal cardiac myocytes and MEFs isolated from AC5 KO and WT mice. Myocytes

were treated with H2O2 (25, 50, and 100 mM) (upper left) or UV (10 and 25 mJ/cm2; lower left) and evaluated for cell viability using CellTiter-Blue Cell

Viability Assay. AC5 KO neonatal myocytes showed more tolerance to oxidative and DNA damage (*p < 0.05 versus WT). MEFs were treated with

H2O2 (50, 100, 200, and 400 mM; upper right) or UV (25 and 100 mJ/cm2; lower right) and evaluated for survival rate using trypan blue exclusion.

AC5 KO MEFs showed more tolerance to oxidative and DNA damage (*p < 0.05 versus WT). Data are expressed as mean ± SEM.

(B) Apoptosis was analyzed in response to UV or H2O2 in MEFs and adult fibroblasts isolated from AC5 KO and WT mice by histone-associated DNA

fragmentation using Cell Death Detection ELISA. Apoptosis was lower in AC5 KO than in WT MEFs and adult fibroblasts (*p < 0.05), indicating more

tolerance to oxidative and DNA damage in AC5 KO than in WT mice. Data are expressed as mean ± SEM.

(C) Western blotting of MnSOD from the heart, brain, and kidney of AC5 WT and KO mice (20 months, n = 4). The level of MnSOD is significantly greater

in the heart, brain, and kidney of AC5 KO mice compared to WT mice (*p < 0.05). Data are expressed as mean ± SEM.
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Figure 5. The Raf/MEK/ERK Pathway Plays an Essential Role in Mediating Stress Resistance in AC5 KO Mice

(A) 2D gel images from brain protein extracts of AC5 WT (top left panel) and KO mice (top right panel). The lower panel shows a magnified gel region

from WT (left) and AC5 KO (right). Gels were stained by SYPRO Ruby and quantified by Compugen Z3 software. The circled spots show an alteration

in the pattern of protein migration between WT and AC5 KO mice, which were later identified as MEK1 by peptide mass mapping using MALDI TOF

mass spectrometry and protein database search (Figure S3).

(B) Western blotting of p-MEK in the heart of AC5 WT and KO mice (20 months, n = 4 in each group). The level of p-MEK is significantly increased in

AC5 KO mice, *p < 0.05. Data are expressed as mean ± SEM.

(C) Western blotting of p-ERK in the heart and kidney of AC5 WT and KO mice (20 months, n = 4 in each group). The levels of p-ERK are significantly

increased in old AC5 KO mice for both kidney and heart, *p < 0.05. The levels of p-ERK are also increased in MEFs. Data are expressed as mean ±

SEM.

(D) The cell viability of AC5 WT and KO MEFs pretreated with PD98059 (30 mM and 60 mM) for 30 min before 24 hr incubation with 50 mM (left) or 100 mM

H2O2 (middle). MEFs were isolated from three KO and two WT mice. Two cell viability data points from each animal in each group at different con-

centrations of PD98059 were used to create graph and regression lines. The regression lines were compared statistically for differences in the slope

using ANCOVA. Clearly, the cell viability in the presence of PD98059 was lower than that without PD98059. The differences between the slopes are
252 Cell 130, 247–258, July 27, 2007 ª2007 Elsevier Inc.



Figure 6. The Cyr1/cAMP/PKA Pathway

and the Raf/MEK/ERK Pathway Are Inter-

acting Genetically in the Regulation of

Resistance to Heat Shock and Oxidative

Stress and in Controlling Chronological

Lifespan

(A) ERK2 is expressed from a yeast plasmid

and regulated by the ADH1 promoter. WT cells

were transformed with an empty plasmid

and ERK2-expressing plasmid. Expression of

ERK2 was examined by western blotting (upper

panel). The lower left panel is a Coomassie-

stained gel.

(B) Yeast strains (WT, WT expressing ERK2 in

a plasmid, cyr1-1 mutant cells, and cyr1-1 mu-

tant cells expressing ERK2) were incubated at

55�C for five minutes or incubated in the pres-

ence of 25 mM hydrogen peroxide (H2O2) at

30�C for 30 min.

(C) Chronological lifespan was determined

from a WT strain, a WT strain expressing

ERK2 on a plasmid (pl), a cyr1-1 mutant strain,

and a cyr1-1 mutant strain expressing ERK2.

Standard errors are shown. The median life-

spans are: WT (5.1 days), WT ERK2 (6.3

days), cyr1-1 (7.5 days), and cyr1-1 ERK2 (7.8

days). Data are expressed as mean ± SEM.

(D) Yeast strains (WT, cyr1-1, kss1, and kss1

cyr1-1 mutant cells) were incubated at 55�C

for five minutes or incubated in the presence

of 25 mM hydrogen peroxide (H2O2) at 30�C

for 30 min.

(E) Chronological lifespan determination of WT,

cyr1-1, kss1, and kss1 cyr1-1 mutant cells.

Standard errors are shown. The median life-

spans are: WT (6 days), cyr1-1 (7.7 days),

kss1 (4.5 days), and kss1 cyr1-1 (6.4 days).

Data are expressed as mean ± SEM.
increases with aging and may play a role in the develop-

ment of aging cardiomyopathy (Lakatta, 1993; Swynghe-

dauw et al., 1995). For these reasons, it has been thought

that desensitization in the b-AR signaling pathway is pro-

tective in aging cardiomyopathy (Asai et al., 1999). b-AR

blockers improve survival after myocardial infarction,

have salutary effects in patients with heart failure, and

may have antiatherosclerosis effects. On the other hand,
chronically enhanced b-AR stimulation with age is delete-

rious to the heart; indeed a number of mouse models of in-

creased b-AR stimulation at the level of the receptor (Du

et al., 2000; Engelhardt et al., 1999; Liggett et al., 2000),

G protein (Iwase et al., 1996), or PKA (Antos et al., 2001)

have been shown to have increased mortality and de-

creased resistance to stress. The effect of chronic inhibi-

tion of b-AR signaling upon aging of the heart has not
significant, p < 0.05, as denoted by the asterisks, indicating that the reduction of tolerance to oxidative stress was greater in AC5 KO than in WT. The

cell viability of AC5 WT and KO MEFs with ERK1 and ERK2 knockdown using ERK siRNA and then incubation with 400 mM H2O2 are shown (right).The

cell viability with ERK1 and ERK2 knockdown was less than that without ERK1 and ERK2 knockdown. These observations demonstrate that inhibition

of ERK activation reduces the tolerance to different concentrations of oxidative stress. Data are expressed as mean ± SEM.

(E) Western blotting of MnSOD from MEFs of WT and AC5 KO mice with and without PD98059 (left) and with and without ERK siRNA (right). The level of

MnSOD was reduced in MEFs pretreated with PD98059 and ERK siRNA.
Cell 130, 247–258, July 27, 2007 ª2007 Elsevier Inc. 253



been examined using specific loss-of-function models.

The protection of AC5 KO mice from both aging cardio-

myopathy (LVH, fibrosis, and apoptosis; this study) and

stresses (pressure overload and chronic catecholamine

stimulation; our previous studies in Okumura et al.,

2003a, 2003c) may result from a desensitization of b-AR

signaling in the heart since AC5 is a major isoform of AC

in cardiac myocardium.

It is generally believed that lifespan of the organism is

regulated by key, evolutionarily conserved, molecular

mechanisms, such as sirtuin family proteins and FOXO

family transcription factors. Although it has been shown

that the genetic mutations in the cAMP-PKA pathway ex-

tend both replicative and chronological lifespan in yeast

(Fabrizio et al., 2001; Lin et al., 2000), whether or not

similar mechanisms regulate lifespan of mammals is a

critically important issue, which remains to be demon-

strated. Our observation clearly indicates that genetic

deletion of AC5, a mammalian homolog of yeast Cyr1,

extends the lifespan of mice.

To investigate the molecular mechanisms in the regula-

tion of longevity in AC5 KO mice, an unbiased proteomic

analysis followed by confirmation by western analysis

demonstrated activation in the Raf/MEK/ERK signaling

pathway. Previous findings suggested that activation of

the Raf/MEK/ERK pathway declines with age (Ajuh et al.,

2000; Hutter et al., 2000; Lorenzini et al., 2002; Meloche

et al., 2000; Miller et al., 1997; Torres et al., 2003; Zhen

et al., 1999). Increased levels of p-ERK were found in

long-lived CR mice (Ikeyama et al., 2002) and Snell dwarf

mice (Madsen et al., 2004). ERK has also been considered

as a cardioprotective agent in aged myocardium (Taylor

and Starnes, 2003). All of these results are consistent

with a notion that the Raf/MEK/ERK pathway is critical in

the aging process. However, a beneficial effect of ERK

in longevity has not been investigated previously.

We used yeast as a model to investigate the role of

Raf/MEK/ERK activation in longevity. Overexpression of

human ERK2 in a yeast strain caused extended chrono-

logical lifespan and stress resistance, strongly suggesting

that the mammalian ERK functions in controlling lifespan.

Furthermore, lack of Kss1p, an ERK2 homolog in yeast,

significantly reduced the lifespan and resistance to heat

and oxidative stress in the cyr1-1 mutant, consistent

with the notion that ERK2 homologs play an essential

role in mediating lifespan extension in the cyr1-1 mutant.

It should be noted, however, that a parallel pathway, pre-

sumably another yeast homolog of mammalian ERKs or

even ERK-independent mechanisms, may also regulate

lifespan and resistance to oxidative stress and heat

because the KSS1 deletion generated upon the cyr1-1

mutant showed significantly longer lifespan than the

KSS1 deletion alone.

Another important finding is that AC5 KO mice are resis-

tant to oxidative stress. Apoptosis, which may result from

oxidative damage, was reduced in the myocardium of

AC5 KO mice compared to WT mice, and molecular

mechanisms to be involved in protection against apopto-
254 Cell 130, 247–258, July 27, 2007 ª2007 Elsevier Inc.
sis, p-Bad, Bcl-xl, Hsp70, and XIAP, were increased not

only in heart but also in kidney and brain. Resistance to

oxidative stress has been identified in some longevity

mouse models; e.g., IGF-1-receptor-deficient mice (Hol-

zenberger et al., 2003), p66Shc�/� mice (Migliaccio et al.,

1999), mice with overexpression of mitochondria-specific

catalase (Schriner et al., 2005), Snell and Ames dwarf mice

(Murakami et al., 2003; Romanick et al., 2004), and CR

mice (Sohal and Weindruch, 1996). In addition, increased

lifespan in nematodes (Feng et al., 2001; Ishii, 2000; Lith-

gow, 1996) and Drosophila (Morrow et al., 2004) also has

been attributed at least in part to increased resistance to

oxidative stress. The Raf/MEK/ERK signaling pathway is

one of the central mediators in response to oxidative dam-

age (Finkel and Holbrook, 2000; Yoon et al., 2002). Activa-

tion of the ERK pathway in response to oxidative stress is

reduced with age, and the loss of oxidative stress toler-

ance with age is linked to reduced ERK activity (Ikeyama

et al., 2002). These findings suggest that the increased

ERK activation in AC5 KO mice may result in an increased

tolerance to oxidative stress. Our data indicate that

MnSOD expression is reduced when ERK activation is

inhibited, suggesting that MnSOD could be a downstream

effector of the ERK signaling pathway. We suggest that

knocking out AC5 activates ERK signaling, which, in

turn, promotes the upregulation of MnSOD, leading to

resistance to oxidative stress (Figure 7).

Development of osteoporotic and osteosclerotic bone,

demonstrated by loss of the nonweight-bearing fibula, is

commonly observed in inbred and outbred mice as they

approach two years of age (Globocnik and Rajtova,

1978; Loutit et al., 1976) and is similar to our observations

made in the old WT mice. In contrast, bone quality was

preserved in the old female AC5 KO mice. In osteoblasts,

ERK activation has been associated with proliferation,

mechanical responsiveness, and differentiation (Kapur

et al., 2004; Lai et al., 2001). Furthermore, ERK signaling

is necessary for bone morphogenetic protein-induced os-

teoblast differentiation (Gallea et al., 2001). Thus, loss of

AC5 function leads to enhanced osteoblast function

through ERK activation. In the current investigation, we

observed protection against adverse effects of aging on

bone and on the heart, and we also observed similar cel-

lular mechanisms in kidney and brain. However, it is con-

ceivable that the protective mechanisms observed in AC5

KO mice are not expressed in all tissues.

The mechanism for longevity has been studied most

extensively in CR (Sinclair, 2005). Like mice with CR, old

AC5 KO mice exhibit lower body weights. Interestingly,

the food intake in young AC5 KO mice was enhanced,

suggesting that lifespan extension in AC5 KO mice may

not be mediated by reduced caloric intake in young ani-

mals, although we cannot exclude the possibility that

AC5 KO may cause a reduction in food intake in later

stages of life, thereby mimicking CR. Alternatively, AC5

KO may induce metabolic effects similar to CR, which

stimulates the eating behavior of young AC5 KO mice. In

fact, inhibition of the cAMP-PKA pathway and CR function



in the same pathway to extend replicative lifespan in

yeast, and mutations that decrease PKA have been sug-

gested as genetic models of CR (Lin et al., 2000). Thus,

further investigation will be required to determine whether

AC5 KO and CR utilize a common mechanism for lifespan

extension in mice.

Review of the literature and our own preliminary studies

indicate that with the exception of particular neoplasms

that vary from mouse strain to strain, the pathology at

the time of death is quite diverse (Chrisp et al., 1996;

Storer, 1966; Wolf et al., 1988). Malignant lymphoma

and alveologenic neoplasms are the principle causes of

death in the C57BL/6J strain (Wolf et al., 1988). One of

few studies of 129/SvJ mice (Storer, 1966) summarized

the major pathology of the mice as ‘‘nonspecific’’ with tu-

mors in 20% of females and 10% of males. The summary

of tumor incidence in mouse strains from Jackson Lab

(Naf et al., 2002) indicates five organs with moderate

tumor incidence in 129/SvJ mice: mammary gland,

Figure 7. The Proposed Mechanism Mediating Longevity and

Stress Resistance in AC5 KO Mice

Knocking out AC5 activates the Raf/MEK/ERK signaling pathway. The

activation of ERK activates antioxidative stress, antiapoptosis, and cell

survival mechanisms, which lead to longevity in AC5 KO mice. The

arrows indicate the direction of signaling ([ indicates increase, and

Y indicates decrease).
lymphohematopoietic, lung, liver, and vulva. By autopsy

of mice with 129/SvJ-C57BL/6J strain, we observed that

lymphoma was a common tumor in WT, and this type of

tumor was ameliorated in AC KO mice (unpublished

data). Cancer protection has also been observed in other

longevity models, e.g., CR and GH/IGF-I deficiency (Yang

et al., 2005; Zhu et al., 2005). The mechanism of lifespan

extension in AC5 KO mice is still not established, but

delayed tumor incidence compared to WT mice could

be one mechanism, whereas protection against the car-

diomyopathy of aging could be another.

In summary, the data from the current investigation sug-

gests that disruption of AC5 mediates activation of the

Raf/MEK/ERK signaling pathway and results in protection

from oxidative stress, apoptosis, and osteoporosis, lead-

ing to longevity in AC5 KO mice (Figure 7). Aging increases

the susceptibility of organs to various age-related dis-

eases. Retarding the aging of the individual organ could

be a fundamental therapy to prevent age-related dis-

eases. AC5 could be a novel target to prevent age-related

heart disease and possibly prolong the lifespan of humans.

EXPERIMENTAL PROCEDURES

Generation of Knockout Mice

The AC5 gene was disrupted by deleting the exon with the first trans-

lation initiation site using homologous recombination as described

previously (Okumura et al., 2003c). All mice were 129/SvJ-C57BL/6

mixed-background littermates from F1 heterozygote crosses. Equal

numbers of male and female mice were studied, except for the bone

integrity experiments, where only female mice were studied. This study

was approved by the Institutional Animal Care and Use Committee at

New Jersey Medical School.

Evaluation of Bone Integrity

The X-ray radiography was taken for the comparison of bone density,

healing stress fracture, and calcification between WT and AC5 KO

mice. Femur structural properties (peak torque) and material pro-

perties (shear stress and shear modulus) were determined from

the force-displacement curves and bone dimensions as previously

described (Manigrasso and O’Connor, 2004).

Measurement of GH Level

GH level was measured using a Mouse/Rat GH ELISA Kit from Diag-

nostic Systems Laboratories (Webster, TX).

Evaluation of Apoptosis

DNA fragmentation was detected in situ using terminal deoxynucleoti-

dyltransferase-mediated dUTP nick end labeling (TUNEL) staining, as

published previously (Geng et al., 1999).

2D Gel Electrophoresis and Protein Identification

Brain tissues from 20-month-old AC5 KO and WT mice were homog-

enized in a 2D compatible buffer (7 M urea, 2 M thiourea, 4% CHAPS,

0.5% Biolytes, 1% Triton, 1% DTT, and phosphatase and protease

inhibitors) and centrifuged at 12,000 3 g for 30 min at 4�C, and the

protein concentration was determined using the Bradford method.

Proteins were separated in the first dimension according to their iso-

electric point by isoelectric focusing (IEF) and then resolved in the sec-

ond dimension, according to the molecular weight by SDS-PAGE. IEF

was performed using Immobilized pH Gradient (IPG) strips with a pH

range of 5–8 on a BioRad IEF cell with a programmed voltage gradient.

SDS-PAGE was performed on a 12.5% polyacrylamide gel. Gels were
Cell 130, 247–258, July 27, 2007 ª2007 Elsevier Inc. 255



stained with SYPRO Ruby (Bio-Rad) and scanned with a Typhon 9400

imager (Amersham Biosciences). 2D gel spots of interest were

excised, destained, and digested with modified trypsin. In gel tryptic

digests were extracted and analyzed by ABI 4700 MALDI-TOF/TOF

mass spectrometers. Spectra were acquired, and measured peptide

masses were searched in the NCBlnr protein sequence database us-

ing the MS-Fit and ProFound search engines with a mass tolerance

of 50 ppm and a required four peptide minimum match.

Western Blotting

The blots were probed with primary antibodies incubated overnight at

4�C. The immunopositive bands were visualized by using Western

Lightning chemiluminescence reagent (Perkin Elmer Life Sciences,

MA). All western blot exposures were in the linear range of detection,

and the intensities of the resulting bands were quantified by Quantity

One software on GS-800 densitometer (Bio-Rad).

Primary Culture of Neonatal Mouse Ventricular Myocytes

and Oxidative Stress Treatment

Primary cultures of ventricular cardiac myocytes were prepared from

1-day-old AC5 KO and WT mice. Briefly, ventricular myocytes were

enzymatically dissociated and preplated for 1 hr to enrich for myo-

cytes. Cells were plated onto either gelatin-coated 60 mm culture

dishes or coverslips and cultured in cardiac myocyte culture media

containing DMEM/F-12 supplemented with 5% horse serum, 4 mg/ml

transferrin, 0.7 ng/mL sodium selenite (GIBCO BRL), 2 g/L bovine se-

rum albumin (fraction V), 3 mM pyruvic acid, 15 mM HEPES (pH 7.6),

100 mM ascorbic acid, 100 mg/ml ampicillin, 5 mg/ml linoleic acid,

and 100 mM 5-bromo-20-deoxyuridine (Sigma Chemical Co.). Culture

media was changed to serum-free media after 24 hr. Myocytes were

further cultured under serum-free conditions for 48 hr before experi-

ments. We obtained myocyte cultures in which more than 95% are

myocytes, as assessed by immunofluorescence staining with a mAb

against sarcomeric myosin (MF20). After culturing for 48 hr, myocytes

were treated by UV (10 and 25 mJ/cm2) and H2O2 (25–100 mM) and

evaluated for cell viability using CellTiter-Blue Cell Viability Assay

(Promega Co., Madison, WI).

Primary Culture of Fibroblasts and Oxidative Stress Treatment

MEFs were isolated from embryos of homozygous AC5 KO mice or

AC5 WT mice. Mouse adult skin-derived fibroblasts were isolated

from tails of homozygous AC5 KO mice or AC5 WT mice. The geno-

types of MEFs were identified by PCR analysis using genomic DNA.

The fibroblasts were expanded for another two passages before

use. All fibroblasts were cultured in complete DMEM (Dulbecco’s

modified Eagle’s medium) with high glucose (Hyclone) containing

10% FBS, 200 mM L-glutamine, and 1% penicillin-streptomycin. The

third passage cells were treated by H2O2 (25–400 mM) or UV light

(25–500 mJ/cm2). Cell survival rate was determined after 1–2 days

using trypan blue exclusion method. Histone-associated DNA frag-

mentation was analyzed for apoptotic cell death by ELISA (Cell Death

Detection ELISA Plus, Roche).

ERK1 and ERK2 siRNA Transfection

ERK1 (sc-29308) and ERK2 (sc-35336) siRNA from Santa Cruz Bio-

technology were used to knock down gene expression of ERK1 and

ERK2 in AC5 MEFs. Briefly, in a 96-well tissue culture plate, 1.3 3

104 cells were seeded per well in antibiotic-free normal growth medium

supplemented with FBS. The cells were incubated at 37�C until 60%–

80% confluent. Cells were then incubated at room temperature for 5

min with Lipofectamine 2000 (0.94 ml) and OPTI medium (9.4 ml). siRNA

control (sc-37007; 40 ml) or of ERK1 (20 ml) and of ERK2 (20 ml) siRNA

was then added, and cells were incubated for an additional 20 min. The

cells were washed with 200 ml OPTI medium. 94 ml of OPTI medium

was added to the well, followed by siRNA transfection mixture, and

incubated for 4 hr at 37�C. This mixture was then replaced by normal

growth medium and incubated for 50 hr. The cells were treated over-
256 Cell 130, 247–258, July 27, 2007 ª2007 Elsevier Inc.
night with 100 ml 2% FBS growth medium containing different concen-

trations of H2O2 and were then analyzed for viability.

Yeast Methods

The cyr1-1 mutant strain and its corresponding WT strain were used

(Fabrizio et al., 2001). The cDNA encoding ERK2 was inserted into

the YEplac195 plasmid (containing a LEU2 gene); ERK2 is under the

control of the ADH1 promoter (YEplac195-ADH-ERK2). Expression

levels were tested by western blotting analysis using polyclonal anti-

bodies against ERK2 protein. The YEplac195-ADH (empty plasmid)

and YEplac195-ADH-ERK2 plasmids were transformed into both

a WT and a cyr1-1 mutant yeast strain. The plasmids were maintained

in a complete synthetic medium lacking leucine (YC-Leu). The ORF of

the KSS1 gene was knocked out precisely by gene disruption using

a HIS3 marker gene. Yeast strains were tested for responses to differ-

ent stresses: cells were incubated for 5 min at 55�C or in the presence

of 25 mM hydrogen peroxide at 30�C for 30 min. Chronological lifespan

was determined as previously described (Fabrizio et al., 2003; Sun

et al., 2002). Experiments were repeated four times.

Statistical Analysis

Data are expressed as mean ± SEM. For comparison of two groups,

Student’s t test was used. Survival curves were compared using Chi

Square, Kaplan-Meier survival analysis or ANOVA with Fisher’s

PLSD test. Regression lines were compared for differences in slope

using the Analysis of Covariance (ANCOVA). Significance was

accepted at p < 0.05.

Supplemental Data

Supplemental Data include two tables and four figures and can be

found with this article online at http://www.cell.com/cgi/content/full/

130/2/247/DC1/.
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