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SUMMARY

We analyzed aging parameters using a mechanistic
target of rapamycin (mTOR) hypomorphic mouse
model. Mice with two hypomorphic (mTORD/D)
alleles are viable but expressmTOR at approximately
25% of wild-type levels. These animals demonstrate
reduced mTORC1 and mTORC2 activity and exhibit
an approximately 20% increase in median survival.
While mTORD/D mice are smaller than wild-type
mice, these animals do not demonstrate any alter-
ations in normalized food intake, glucose homeosta-
sis, or metabolic rate. Consistent with their increased
lifespan, mTORD/D mice exhibited a reduction in
a number of aging tissue biomarkers. Functional
assessment suggested that, as mTORD/D mice age,
they exhibit a marked functional preservation in
many, but not all, organ systems. Thus, in a mamma-
lian model, while reducing mTOR expression mark-
edly increases overall lifespan, it affects the age-
dependent decline in tissue and organ function in a
segmental fashion.
INTRODUCTION

Inhibiting target of rapamycin (TOR) activity appears to extend

lifespan in various model systems, including yeast, worms, and

flies (Bjedov et al., 2010; Kaeberlein et al., 2005; Kapahi et al.,

2004; Medvedik et al., 2007; Vellai et al., 2003). Moreover, dele-

tion of the TOR1 gene in yeast results in an increase in replicative

lifespan that cannot be further extended by nutrient restriction

(Kaeberlein et al., 2005). Evidence also suggests that mecha-

nistic TOR (mTOR) plays a role in regulating mammalian lifespan.
Cel
Treatment of mice beginning at 20 months of age with rapamy-

cin, a pharmacological inhibitor of mTOR, results in an extension

of lifespan that averages 9% formales and 13% for females (Har-

rison et al., 2009). When rapamycin was initiated at 9 months of

age, median survival was increased to 10% for males and 18%

for females (Miller et al., 2011). Similarly, deletion of ribosomal

S6 protein kinase 1 (S6K1), a downstream effector of mTOR,

extends the median lifespan of female S6K1�/� mice by approx-

imately 19% (Selman et al., 2009). Very recently, an additional

genetic model consisting of mice heterozygous for deletion of

both mTOR and mLST8 (mammalian lethal with Sec13 protein

8) also demonstrated lifespan extension, again only evident in

female mice (Lamming et al., 2012).

In mammals, mTOR exists in two distinct complexes, termed

mTORC1 and mTORC2. Each of these mTOR complexes has

distinct protein components, although both share the catalytic

mTOR subunit, as well as mLST8 (Dazert and Hall, 2011; Lap-

lante and Sabatini, 2012; Zoncu et al., 2011). Agents such as ra-

pamycin are known to acutely inhibit mTORC1, although chronic

treatment can also affect the activity of mTORC2 (Lamming

et al., 2012; Sarbassov et al., 2006). How reducingmTOR activity

extends lifespan remains incompletely understood. In addition,

whether manipulations of pathways that regulate mammalian

lifespan will slow aging and age-related pathologies in a uniform

or segmental fashion remains largely unexplored. Here, using a

genetic model of reduced mTOR expression, we provide evi-

dence that reducing mTOR activity produces a marked increase

in overall lifespan while also regulating an important, but not uni-

versal, subset of tissue-specific, age-dependent parameters.

RESULTS

Reduced mTOR Expression Increases Survival
To assess the role of mTOR in mammalian aging, we used a

model of hypomorphic mTOR expression that has been recently
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Figure 1. A Mouse Model of Reduced mTOR Expression Extends Life Span

(A) Genomic Organization of the WT Allele (+) and the Hypomorphic mTOR Allele (D).

(B) Representative mTOR protein expression in the liver of two WT (mTOR+/+) and two mTORD/D mice. GAPDH is used as a loading control, and the normalized

expression (WT = 1) of mTOR to GAPDH is shown for each mouse.

(C) Leucine-stimulated S6 Kinase phosphorylation (pS6K) in primary mouse embryonic fibroblasts isolated from WT or mTORD/D mice.

(D) Insulin-stimulated mTOR activity in pairs of WT or mTORD/D mice.

(E) Survival of a cohort of male WT and mTORD/D mice.

(F) Survival of female members of the cohort.

(G) Survival of the overall cohort.

(H) Incidence of malignant tumors found at necropsy denoted by shaded portion of each bar. While the overall incidence of cancer was different between the two

genotypes, the spectrum of tumors observed was similar. **p < 0.001, Fisher’s exact test.

See also Figure S1.
described (Zhang et al., 2011). This model results from a floxed

neomycin cassette inserted between exons 12 and 13 of the

mTOR locus that results in the partial disruption of mTOR tran-

scription (Figure 1A). While complete disruption of Raptor, Ric-

tor, mLST8, or mTOR is embryonically lethal (Gangloff et al.,

2004; Guertin et al., 2006; Murakami et al., 2004), mTORD/D

mice were viable in a mixed 129/C57BL/6 background. Analysis

of tissues derived from mTORD/D mice revealed that the level of

mTOR protein was reduced to approximately 25% of wild-type

(WT) levels (Figures 1B and S1A). Mouse embryonic fibroblasts

(MEFs) derived from mTORD/D mice also exhibited reduced

mTOR expression, with no apparent alteration in the expression

of associated proteins such as Raptor and Rictor (Figures 1C

and S1B). When MEFs derived from mTORD/D mice were

analyzed, levels of TORC1 and TORC2 complexes appeared to
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be reduced to a similar degree (Figure S1B). As expected,

mTORD/D MEFs had reduced activation of S6 kinase following

leucine addition (Figure 1C), although the overall level of protein

translation was not altered (Figure S1C). We noted that mTORD/D

mice also exhibited a decrease in mTOR signaling in vivo. In

particular, the activation of S6 kinase following insulin adminis-

tration was markedly attenuated in mTORD/D mice (Figure 1D).

Similarly, the mTORC2 dependent serine 473 phosphorylation

of Akt was also reduced in these mice.

We next asked whether this reduction in mTOR activity was

sufficient to provide an extension in lifespan. Median survival of

the mTORD/D male mice was significantly higher than observed

in mTOR+/+ (WT) male mice (Figure 1E; median survival for WT,

22.9 months [n = 10]; for mTORD/D, 28.0 months [n = 17]; 22%

extension, p = 0.02 by log rank [Mantel-Cox] test). Similarly,
s



the observed median survival for WT female mice was

26.5 months (n = 24), whereas for female mTORD/D mice (n =

26), median survival was 31.5months (Figure 1F; 19%extension,

p = 0.047 by log rank test). For the overall combined cohort,

median survival was 26.2 months for WT mice and 30.3 months

for mTORD/D mice (n = 34 for mTOR+/+ mice and n = 43 for

mTORD/D mice, p = 0.0057 by Cox regression using sex and

genotype as predictors; Figure 1G). We also assessed whether

mTORD/D mice had an increase in maximal lifespan by using

the number of mice in each group that were still alive after 90%

of the pooled distribution of WT and the mTORD/D mice were

dead (Wang et al., 2004). Of the 77 mice in the total cohort, 8

met this criteria, of which 1 was WT and 7 were mTORD/D mice

(p = 0.071, Fisher’s exact test; and p = 0.061when both genotype

and sexwere used as predictors). A similar analysis using an 80th

percentile cutoff demonstrated that, with this less restrictive

threshold, mTORD/D mice exhibited an increase in maximal life-

span (p = 0.005, using genotype and sex as predictors).

Mice involved in the lifespan analysis were not subject to any

physiological testing and received no treatment except if they

developed a visible superficial infection. In such cases, the facil-

ity staff provided a short course of oral, subcutaneous, or topical

antibiotics with or without ibuprofen (5 of 34 WT and 10 of 43

mTORD/D mice received some treatment). If the infection

persisted or worsened, to the point the mouse was felt to be in

significant pain or functionally impaired, then the mouse was

euthanized. In some older mice, the initial superficial infection

was not discovered until it had progressed to such a degree

that the staff believed the condition was too severe to respond

to standard treatment, and, as such, the animal was euthanized

without any prior treatment. We noted that the percentage of

mice euthanized because of severe or progressive superficial

infections was much higher in the mTORD/D mice cohort (WT

mice = 17%, and mTORD/D mice = 37%; p < 0.01, Fisher’s exact

test). In contrast, mTORD/D mice demonstrated an apparent

reduction in the incidence ofmalignant tumors found at necropsy

(Figures 1H, S1D, and S1E; 10 of 26 WT mice [38.5%] sent to

necropsy versus 8 of 36 [21%] mTORD/D mice sent to necropsy;

**p < 0.01, Fisher’s exact test). Besides the observed change in

rates of malignancies and infections, there were no other marked

differences in postmortem pathologies observed between WT

and mTORD/D mice.

NoAlterations in Glucose Homeostasis orMetabolism in
the mTORD/D Mice
Analysis of body size (Figure 2A) and body weight (Figure 2B)

revealed that mTORD/D mice were consistently smaller than their

WT littermates, although normalized body composition was

unchanged (Figure S2A). When food intake was normalized to

body weight, mTORD/D mice and WTmice consumed equivalent

amount of calories (Figure 2C). While rapamycin treatment in

mice results in alteration in glucose homeostasis (Cunningham

et al., 2007; Lamming et al., 2012), analysis of young mTORD/D

mice revealed no significant alterations in glucose tolerance (Fig-

ure 2D) or insulin sensitivity (Figure 2E). Indeed, while a reduction

in insulin signaling is associated with increased lifespan (Kenyon,

2011), fasting levels of insulin were slightly higher in themTORD/D

mice (Figure S2B). This appeared to relate in part to a cell-auton-
Cel
omous increase in insulin secretion from pancreatic islets

isolated from mTORD/D mice (Figures S2C and S2D). Analysis

of older WT and mTORD/D mice revealed that there was also

no marked difference in glucose tolerance as these mice aged

(Figure S2E). Serum analysis revealed no significant differences

in various lipid parameters (Figures S2F, S2G, and S2H). Finally,

the respiratory exchange ratio (Figure 2F), in vivo fatty acid

oxidation rates (Figure 2G), the overall metabolic rate (Figure 2H),

and normalized energy expenditure (Figure 2I) were all unaltered

in mTORD/D mice. Thus, as previously observed, the lifespan

extension observed by reducing mTOR expression does not

appear to result from a significant alteration in energetic or meta-

bolic parameters (Lamming et al., 2012).

Biomarkers of Aging Are Reduced in the mTORD/D Mice
When compared to a cohort of young mice, we observed a

significant increase in p16Ink4A mRNA in the tissues of old WT

mice (Krishnamurthy et al., 2004). This age-dependent increase

in p16Ink4a mRNA was significantly reduced when kidneys and

livers of aged matched mTORD/D mice were assessed (Figures

3A and 3B). Aging tissues also exhibit evidence of increased

oxidative stress and accumulation of protein aggregates (Kastle

and Grune, 2011; Schöneich, 2006; Shang and Taylor, 2011). As

previously described (Schöneich, 2006), when compared to

young WT mice, tissues from old WT mice exhibited a marked

increase in nitrotyrosine staining (Figures 3C, S3A, and S3B).

When compared to age-matched WT mice, old mTORD/D mice

had significantly reduced levels of tissue nitrotyrosine staining

(Figures 3C and 3D). Older tissues also accumulate aggregates

of polyubiquitinated proteins (Kastle and Grune, 2011). These

proteins are cleared in part by the mTOR-regulated process of

autophagy. Older tissues of WT mice demonstrated a clear

increase in the accumulation of polyubiquitin proteins, and this

accumulation was less evident in mTORD/D tissues (Figures 3E,

3F, S3C, and S3D).

mTORD/D Mice Have Selective Improvement in Tissue
and Organ Aging
We next sought to evaluate a variety of age-dependent parame-

ters that might be important determinants of improved quality of

life, independent of median lifespan. We first evaluated spatial

learning and memory using the Barnes maze test, a noninvasive

assessment of hippocampal function (Kennard and Woodruff-

Pak, 2011). We noted no differences in the latency time to find

the escape hole between young WT and mTORD/D mice (Fig-

ure 4A). Latency times significantly increased in old WT mice,

consistent with the well-known age-dependent decline in spatial

learning and memory. While latency times also increased in old

mTORD/Dmice, this age-dependent impairment was significantly

less than what was observed in WT mice. By manually tracking

the mice, we could also assess the learning strategies used dur-

ing the training period. In both young and old mice, initially mice

seek the escape hole using a random strategy. Over time, as

spatial memory is encoded, the approach becomes more serial

and directed. The amount of training required to have the latter

strategy predominate (indicated by the colored arrows in Fig-

ure 4B) was approximately 1 day longer in old WT mice

compared to old mTORD/D mice). This is consistent with old
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Figure 2. The mTORD/D Mice Are Smaller but Have No Significant Alterations in Glucose Homeostasis and Metabolism

All measurements were performed using male mice.

(A) Representative size of a WT mouse and an mTORD/D adult mouse.

(B) Body weight of WT (n = 7) and mTORD/D (n = 7). Curves are statistically different using a one-way analysis of variance followed by two-tailed t test, p < 0.01.

(C) Daily food intake is indistinguishable betweenWTmice (shaded bar) andmTORD/Dmice (open bar) (n = sevenWTmice, and n = six mTORD/Dmice; food intake

is normalized to body weight).

(D) Glucose tolerance of 8- to 12-week-old WT (n = 7) and mTORD/D (n = 6) mice.

(E) Insulin tolerance test of 8- to 12-week-old WT (n = 12) and mTORD/D (n = 7) mice.

(F) Respiratory exchange ratio (RER) of WT (n = 7) and mTORD/D (n = 5) mice.

(G) Measurement of rates of total body fatty acid oxidation normalized to body weight in WT (n = 7) and mTORD/D (n = 5).

(H) Total oxygen consumption normalized to body weight (n = WT and n = 5 mTORD/D mice).

(I) Total daily energy expenditure is not altered in mTORD/D mice (n = seven WT mice and n = five mTORD/D mice). For all panels, shaded bars represent the WT

mice, and the open bars represent the mTORD/Dmice. Where indicated, metabolic parameters are adjusted to body weight raised to the 0.75 power, as indicated

by the symbol (BW).

All pooled data are presented as mean ± SEM. See also Figure S2.
mTORD/D mice having a better preserved capacity for acquiring

new spatial memory.

We next assessed the balance and coordination using a

Rotarod apparatus. We noted no difference in this functional

parameter between young WT and mTORD/D mice (Figure 4C).

When compared to young WT mice, older WT mice were unable

to remain as longon thespinningRotarodapparatus. This is again

consistent with the known decrement in balance and coordina-
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tion as mice age (Barreto et al., 2010). Again, this decline in per-

formance was significantly less marked in the mTORD/D mice

(Figures 4C and S4A). We observed a similar pattern when we

assessed gait parameters of the mice. Stride width variability

has been closely associated with falls in the elderly population

(Hausdorff et al., 2001; Maki, 1997). Again, this parameter was

similar in our cohorts of youngWTandmTORD/Dmice (Figure 4D).

AsWTmice aged, stride width variability, an integrative measure
s



Figure 3. Molecular and Biochemical Biomarkers of Aging Are Reduced in Old mTORD/D Mice

(A) Assessment of the age-dependent increase in kidney mRNA levels for the cell cycle inhibitor p16INK4a normalized to GAPDH expression (n = three mice per

genotype and age, with each mouse performed in triplicate).

(B) A similar assessment in old and young liver samples (n = six young WT and n = five young mTORD/D samples; n = four old WT and n = four old mTORD/D

samples, with each sample performed in triplicate).

(C) Representative brain sections stained for nitrotyrosine (red, upper panels) obtained from youngWTmice, oldWTmice, and oldmTORD/Dmice. Cell nuclei with

stained concurrently with DAPI (blue, lower panels).

(D) Intensity of nitrotyrosine staining in the brains of old WT mice (n = three mice, with three to five determinations per mouse) and mTORD/D mice (n = four mice,

with three to five determinations per mouse).

(E) Staining for polyubquitinated proteins in brain tissue sections obtained from young WT mice, old WT mice, and old mTORD/D mice. Upper panels (red) are

stained with an antibody that recognizes proteins that are polyubiquitinated, and lower panels are analyzed by nuclear DAPI staining.

(F) Quantification of polyubiquitinated protein levels in brain sections of WTmice (n = three mice, with three to five determinations per mouse) and mTORD/Dmice

(n = four mice, with three to five determinations per mouse).

All pooled data are presented as mean ± SEM. *p < 0.05. **p < 0.01. See also Figure S3.
of neurological,muscular, andpostural control, increased. Again,

this change was less evident in mTORD/D mice (Figure 4D). Simi-

larly, assessment of grip strength, a measure of muscle strength,

demonstrated that, once again, mTORD/D mice were protected

from an age-dependent decline in function (Figure 4E).

While the mTORD/D mice appeared to have slower decline in

various age-dependent parameters, this was not universally

true. Measurement of bone volume revealed that the age-depen-
Cel
dent decrease in trabecular bone volume was actually more pro-

nounced in the mTORD/D mice (Figure 4F). Similarly, we noted

that mTOR hypomorphic mice suffered a significant increase in

the age-dependent increase in infections that predominantly

affected the mouth, eye, and skin (Figure 4G). Thus, it appears

that, in contrast to the other functional parameters measured,

the age-dependent decline in bone volume and immune function

were seemingly exacerbated in the mTORD/D mice.
l Reports 4, 913–920, September 12, 2013 ª2013 The Authors 917



Figure 4. The Effects of Reduced mTOR Expression on a Range of Tissue Specific Age-Related Parameters

(A) Escape latency times on day 3 of training for the Barnes maze test for both young female (n = six mice per genotype) and old female (n = nine WT and n = 13

mTORD/D) mice. WT mice are represented by the shaded bars, while the open bars represent mTORD/D mice. *p < 0.05.

(B) Learning strategy of old mice in the acquisition phase for training in the Barnes maze. Arrows indicate transition point between random to directed searching,

an indicator of the speed in which new spatial learning is obtained (n = nine WT female mice, and n = 13 mTORD/D female mice).

(C) Duration on the Rotarod, ameasure of coordination and balance (n = six male mice per genotype for youngmice; n = four old maleWT, and n = seven old male

mTORD/D mice). *p < 0.05.

(D) Stride width variance in young (n = six young female mice per genotype) and old mice (n = six old WT male and female mice, and n = 13 old male and female

mTORD/D mice). *p < 0.05.

(E) Grip strength, normalized to gram of body weight, in young female mice (n = six per genotype) and old female mice (n = four WT mice, and n = 11 mTORD/D

mice). *p < 0.05.

(F) Assessment of the age-dependent decline in bone volume (BV) to tissue volume (TV) (n = four young mice per genotype, and n = six old mice per genotype).

*p < 0.05.

(G) Age-dependent incidence of visibly apparent superficial infections of the skin, eyes, ormouth of the total cohort ofWT andmTORD/Dmice (n = 34WTmice, and

n = 43 mTORD/D mice; statistical analysis by Fisher’s exact test). *p < 0.05. **p < 0.01.

All bar graph data are presented as mean ± SEM. See also Figure S4.
DISCUSSION

In summary, we describe a genetic model for reduced mTOR

expression and activity that results in a robust increase in life-

span. The magnitude of lifespan extension in our model was

larger than previously observed when mice were given rapamy-

cin (Harrison et al., 2009). There are numerous possibilities that

might explain these differences. First, in the initial report using
918 Cell Reports 4, 913–920, September 12, 2013 ª2013 The Author
rapamycin, the drug was initiated at 20 months of age. This

contrasts with our model in which our genetic reduction of

mTOR activity begins in the embryo. Indeed, a subsequent

study, in which rapamycin was initiated at 9 months of age,

saw slightly larger effects on lifespan (Miller et al., 2011).

Another possibility is that the reduction in mTOR activity was

greater in our model than can be achieved in animals treated

pharmacologically. It should be noted that, while mTORD/D
s



mice were viable, when we bred mTOR+/D mice, we consistently

generated less than 25% of pups that were mTORD/D. This sug-

gests that the reduction in mTOR expression we observed is

close to what may be the lower limit needed for embryonic

viability. Another possibility is that rapamycin is primarily an in-

hibitor of mTORC1 activity, although, as noted, with chronic

administration it can have effects on mTORC2 activity as well

(Lamming et al., 2012; Sarbassov et al., 2006). In contrast,

our model leads to a balanced reduction in both mTORC1

and mTORC2 activity. Finally, it is important to note that we

were dealing with a relatively small cohort of mice and that

the observed median survival of our WT mice cohort

(26.2 months) is on the short end of the published spectrum.

As such, the precise magnitude of lifespan extension seen

with the mTORD/D mice must be viewed with caution until it is

replicated in other facilities.

Our data suggest that a number of molecular, biochemical,

and functional parameters of aging were reduced or slowed in

the mTORD/D mice. This is consistent with the notion that

reducing mTOR expression does indeed slow the entire aging

process in mammals (Wilkinson et al., 2012). Of note, our data

clearly indicate that not all age-related parameters are regulated

in an mTOR-dependent fashion. While the age-dependent in-

crease in infection observed in mTORD/D mice are likely related

to the known role of mTOR in immune function (Chi, 2012; Zhang

et al., 2011), these immune effects are less likely to explain the

observed accelerated decline in bone volume in mTORD/D

mice. Perhaps more relevant is a set of recent observations

suggesting a role for mTOR in modulating the age-dependent

decline in bone mass (Xian et al., 2012). Finally, recent data

suggest that long-term rapamycin treatment may accelerate

cataract formation and augment testicular degeneration (Wilkin-

son et al., 2012). While these parameters were not part of our

standard necropsy analysis, we did a separate analysis for a

limited number of WT and mTORD/D mice. While we saw no

evidence for alterations in the testes (Figures S4B and S4C),

our preliminary data are consistent with a potential role for

mTOR activity in delaying cataract formation (Figure S4D).

Taken together, our observations suggest that single individ-

ual genetic pathways that extend lifespan will likely have non-

uniform effects on the rate that individual tissues manifest their

age-dependent decline in function. One interpretation of these

observations would be that tissue aging and organismal aging

are governed by interconnected but separable regulatory control

mechanisms. One potential analogy might be circadian rhythms,

whereby multiple distinct and independent peripheral clocks

coexist in a confederation with a stronger central clock. In a

similar fashion, our data suggest the interesting possibility that

the rate of tissue aging may be viewed as influenced by, but

not completely subservient to, the rate of organismal aging.

Alternatively, our results could suggest the possibility that

some interventions that slow aging may also have unintended,

negative tissue-specific side effects. A very relevant precedent

perhaps already exists for this phenomenon, as people who

undergo voluntary caloric restriction appear to have a corre-

sponding reduction in their bone mineral density (Villareal

et al., 2011). Further analysis of this and related genetic models

should help distinguish between these possibilities and, we
Cel
hope, will help guide potential therapies aimed at extending life-

span and health span in people.
EXPERIMENTAL PROCEDURES

Mice

The generation of mTORD/D mice has been previously described (Zhang et al.,

2011). mTORD/+ mice were crossed to generate mTOR+/+ and mTORD/D litter-

mate mice used for this study. Mice were a mixed background consisting of

129S1 and C57BL/6Ncr strains. The proportion of mTORD/D mice generated

from parents bearing the mTORD/+ genotype was less than the predicted

25% (97 mTORD/D mice pups out of 697 live births, 13.9%), suggestive of

some degree of embryonic lethality. All animal experiments were conducted

in accordance with the guidelines of the Animal Care and Use Committee,

National Heart, Lung and Blood Institute, National Institutes of Health (NIH).

For genotype analysis, tissues were analyzed by PCR primers and conditions

as described elsewhere (Zhang et al., 2011). Unless stated otherwise, young

mice represent those that are between 3 and 6 months in age, and old mice

represent those between 17 and 27 months in age. Specific ages, number,

and sex of mice used varied and are listed under the relevant specific test.

Lifespan Analysis

For the determination of lifespan, male and female mTOR+/+ and mTORD/D

mice were housed in a specific pathogen-free (SPF) facility. This means that

mice entering the facility must be pathogen free with the exception of the spe-

cific pathogens Helicobacter, mouse parvovirus, or mouse norovirus. Mice

were maintained in microisolator cages in ventilated racks with high-efficiency

particulate air (or HEPA)-filtered supply and exhaust air. All cageswere opened

and changed inside biosafety cabinets or clean air hoods using microisolator

technique. Mice were fed a regular chow diet consisting of 24% of calories

derived fromprotein, 14% from fat, and 62% from carbohydrates (NIH-31/Har-

lan Teklad diet). Mice of different genotypes (mTOR+/+ and mTORD/D mice)

were housed together, but male and female mice were maintained in separate

cages. The maximum density was five mice per cage. The only withdrawal of

mice from the study occurred within the first 6 months, when a limited number

of WT and mTORD/D male mice were excluded because of excessive fighting.

Time of death is calculated using the date mice were found dead, or the time

when themice were determined to bemoribund and/or displaying such severe

discomfort that veterinary technicians recommended euthanasia. We sought

to perform full autopsies on every mouse at the time of their withdrawal from

the study; however, for various logistical reasons, a small fraction of mice of

each genotype were not expeditiously forwarded to the pathologist (7 of 43

mTORD/Dmice and 8 of 34WTmice). Pathological findings includingmalignant

tumors were identified by a team of trained animal pathologists at a central

core facility on the NIH Intramural campus. Mice involved in the lifespan anal-

ysis did not participate in any metabolic or physiological testing. Statistical

analysis for the entire cohort used a Cox regression analysis using genotype

and sex as parameters. The statistics for male and female survival was deter-

mined by the log rank test calculated by PRISM.

For additional details on the materials and methods used in this study,

please see the Extended Experimental Procedures.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures and

four figures and can be found with this article online at http://dx.doi.org/10.

1016/j.celrep.2013.07.030.
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