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SUMMARY

The transcriptional corepressor SMRT utilizes two
major receptor-interacting domains (RID1 and
RID2) to mediate nuclear receptor (NR) signaling
through epigenetic modification. The physiological
significance of such interaction remains unclear.
We find SMRT expression and its occupancy on
peroxisome proliferator-activated receptor (PPAR)
target gene promoters are increased with age in
major metabolic tissues. Genetic manipulations to
selectively disable RID1 (SMRTmRID1) demonstrate
that shifting SMRT repression to RID2-associated
NRs, notably PPARs, causes premature aging and
relatedmetabolic diseases accompanied by reduced
mitochondrial function and antioxidant gene expres-
sion. SMRTmRID1 cells exhibit increased suscepti-
bility to oxidative damage, which could be rescued
by PPAR activation or antioxidant treatment. In
concert, several human Smrt gene polymorphisms
are found to nominally associate with type 2 diabetes
and adiponectin levels. These data uncover a role for
SMRT inmitochondrial oxidativemetabolism and the
aging process, which may serve as a drug target to
improve health span.

INTRODUCTION

Aging and metabolic diseases share certain common pathogen-

eses. Caloric excess results in metabolic diseases and shorter

life expectancy. Conversely, caloric restriction (CR) improves

metabolic parameters and increases longevity (Lee et al.,

2009; Murphy et al., 2003). At the cellular level, the age-depen-

dent decline in mitochondrial function has been implicated in

aging and related metabolic disorders (Balaban et al., 2005;

Reznick et al., 2007; Zid et al., 2009). The electron transport

chain drives the oxidative phosphorylation (OXPHOS) of ADP

to produce ATP. An unavoidable by-product of mitochondrial
Cell M
respiration is the generation of reactive oxygen species (ROS).

Many cellular mechanisms exist to protect the cell and its organ-

elles from oxidative damage (Wallace and Fan, 2009). ROS scav-

enging proteins, including superoxide dismutase 1 (SOD1),

SOD2, glutathione peroxidase (GPx), catalase, and glutathione

S-transferases pi (GSTP), possess enzymatic functions that

neutralize specific ROS. If uncontrolled, oxidative damage

caused by ROS affects proteins, lipids, and nucleic acids,

leading to enzyme and membrane dysfunctions as well as

genetic mutations. These changes further reduce mitochondrial

function and increase susceptibility of cells to oxidative stress,

which is a hallmark of aging (Kapahi et al., 1999; Kenyon,

2005). ROS have also been implicated in the pathogenesis of

metabolic diseases (Roberts and Sindhu, 2009), while treatment

with small antioxidant molecules improved glucose handling and

insulin sensitivity (Houstis et al., 2006).

Several signaling pathways have been linked to both life span

and metabolic homeostasis. Sir2, a member of the sirtuin family

of NAD-dependent deacetylases, is one of the signaling proteins

attributed to the beneficial effects of CR (Guarente, 2006). Re-

sveratrol activates the mammalian homolog of Sir2, SIRT1, to

improve longevity and protect mice from the metabolic distur-

bances caused by high-fat-diet-induced obesity (Baur et al.,

2006; Lagouge et al., 2006). The effects of SIRT1 on metabolism

are mediated in part by PPARg coactivator-1a (PGC-1a), which

is activated through deacetylation by SIRT1 (Rodgers et al.,

2005). Although not directly implicated in longevity, PGC-1a

has been shown to promote the expression of ROS scavenger

proteins, thereby preventing neurodegeneration (St-Pierre

et al., 2006). PGC-1a also regulates genes involved in oxidative

metabolism and mitochondrial biogenesis by activating tran-

scription factors (Lin et al., 2005), including PPARs. The PPAR

nuclear receptor (NR) family consists of PPARa, PPARd (also

called PPARb), and PPARg, all of which are drug targets for

components of metabolic syndrome (Lee et al., 2003; Reilly

and Lee, 2008). PPARa and PPARg exhibit more restricted

effects on fatty acid b oxidation and fat storage in the liver and

adipocyte, respectively. PPARd has a broad tissue expression

pattern and has been shown to regulate fat catabolism and

OXPHOS in muscle, brown adipose tissue (BAT), and macro-

phages (Kang et al., 2008; Pan et al., 2009; Wang et al., 2004).
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The transcriptional activities of PPARs andmany other NRs on

target gene expression are modulated by coactivator and core-

pressor complexes through epigenetic modifications (Glass and

Rosenfeld, 2000). Coactivators, such as PGC-1a, recruit the

p300 family of histone acetyltransferases to ligand-activated

NRs to promote target gene expression. Reciprocally, unli-

ganded NRs interact with corepressor complexes containing

histone deacetylases (HDACs), which inhibit transcription.

Silencing mediator of retinoid and thyroid hormone receptors

(SMRT) and nuclear receptor corepressor (N-CoR) are the two

major corepressors that regulate the activity of many transcrip-

tion factors (Privalsky, 2004). These two proteins are structurally

similar, containing two major nuclear receptor-interacting

domains (RID1 and RID2). Biochemical analyses have identified

the IXXI(V)I sequence within RIDs, termed the CoRNR box motif,

which provides the interface for NR/corepressor interaction

(Glass and Rosenfeld, 2000). These two RIDs preferentially

interact with different NR groups. For example, retinoic acid

receptors (RARs) associate with RID1, while most lipid-sensing

receptors, including PPARs and retinoid X receptors (RXRs),

utilize RID2 located at the C terminus (Hu et al., 2001). Alternative

splicing events have been identified within this RID-containing

region, resulting in several splice variants, including one isoform

with an additional, third RID domain, which enhances thyroid

hormone receptor (TR) interaction (Cohen et al., 2001), and one

without RID2. These observations indicate that each RID has

specific functions through recruitment of distinct sets of NRs.

Given the role of corepressors in NR-mediated transcription,

we sought to examine whether they are involved in suppression

of NR activity in pathological conditions. We were particularly

interested in the function of RID2, which recruits PPARs and

other lipid-sensing receptors. Consequently, we have obtained

a knockin mouse model that selectively disables RID1. The

mutant SMRT will mainly function as a corepressor for RID2-

associated NRs. Our results show that shifting SMRT repression

to RID2 leads to inhibited PPAR activity and depressed OXPHOS

and mitochondrial function. The data also reveal a role for SMRT

in aging and the related metabolic disorders.

RESULTS

A Genetic Model to Study the Role of SMRT in Metabolic
Regulation
We found that SMRT mRNA and protein levels were induced in

BAT and muscle from older mice, independent of high-fat-diet

feeding (Figures 1A and S1B, 2-month-old versus 6-month-

old). SMRT protein, but not mRNA, was also elevated in white

adipose tissue (WAT) with age. We hypothesized that SMRT

may be involved in processes of age-relatedmetabolic diseases.

Accordingly, a genetic model designated as SMRTmRID1, in

which the conserved amino acids of the CoRNR box in SMRT

RID1 were mutated to alanine (IXXVI to AXXAA) (Figure 1B),

was studied. The complete description of the generation of this

mouse model will be reported elsewhere. The resultant SMRT

protein is expected to associate only with RID2-interacting

receptors, including PPARs, which are known regulators of mito-

chondrial oxidative metabolism. SMRTmRID1 mice were born in

normal Mendelian ratios. The expression of SMRT and N-CoR

was not altered in these mice (Figures S1D and S1E). The
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SMRT C-terminal regions with WT RID1/2 (RID1 + RID2) (Fig-

ure 1B, bottom panel), mutant RID1 and WT RID2 (mRID1 +

RID2 from SMRTmRID1 mice), or a natural splice variant contain-

ing only RID1 (RID1) were placed downstream of GAL4-DNA-

binding domain (GAL4-DBD) for testing interaction against

receptor ligand-binding domains (LBD) fused to VP16 activation

domain in the mammalian two-hybrid (M2) system (Figure 1C,

top panel). It has been shown that RARs interact primarily with

SMRT RID1, whereas TRs and PPARs interact predominantly

with SMRT RID2. The M2 interaction assay confirmed that the

association between RARa and SMRT was reduced by the

RID1 mutation and that TRa interacted equally well with RID1 +

RID2 and mRID1 + RID2 (Figure 1C). Intriguingly, the interaction

of mRID1 + RID2 with PPARs was greater than that of WT RIDs,

likely because in the absence of RID1-associated NR binding,

RID2 becomes more readily available to bind PPARs (Figure 1D).

In line with this, the untagged WT PPARd competed more effi-

ciently with VP16-RARa for interaction with GAL4-mRID1 +

RID2 than GAL4-RID1 + RID2 (Figure 1E). PPARd was used

here and in later experiments, as it is expressed in most

tissues/cell types. The decreased and increased affinity of

mRID1 + RID2 for RAR and PPAR, respectively, could also be

observed with DNA-bound RAR/RXR and PPAR/RXR

complexes in gel shift assays (Figure S1F). In addition, we found

that while GAL4-N-CoR RID1 + RID2 interacted equally well with

VP16-PPARd and VP16-RARa, GAL4-SMRT RID1 + RID2 ap-

peared to interact more strongly with VP16-PPARd (Figure 1F),

indicating that SMRT may be more relevant for PPAR function

compared to N-CoR. Another important metabolic regulator,

LXRa, showed stronger interaction with N-CoR, whereas LXRb

associated weakly with both SMRT and N-CoR (Figure 1G), as

reported previously (Hu et al., 2003). The interaction between

LXRa/b and mRID1 + RID2 was unaltered. These data suggest

that SMRTmRID1 may serve as a model to examine the effect of

increased SMRT repression on activities of NRs, notably the

PPARs, a scenario likely to occur in conditions of metabolic dys-

regulation associatedwith agingwhen SMRT expression is upre-

gulated. Subsequently, SMRTmRID1 were bred into the C57BL/6

background, which is more suitable for metabolic studies.

SMRTmRID1 Mice Develop Premature Aging and Related
Metabolic Diseases
Although born at the same weight as their WT littermates, both

female and male SMRTmRID1 mice gained significantly more

body weight with age on chow diet (Figures 2A and S2A). Six-

month-old female SMRTmRID1 mice showed higher percentage

body fat and decreased lean mass, as determined by dual-

energy X-ray absorptiometry (DEXA) scanning (Figure 2B).

DEXA also revealed that the bone mineral density was reduced

in SMRTmRID1 mice (Figure 2C). In older animals, SMRTmRID1

mice developed cataracts, alopecia, and gray hair sooner than

WT controls (Figures 2D and 2E). In addition, the rotarod test

demonstrated that SMRTmRID1 mice had diminished sensori-

motor coordination (Figure 2F), implicating a premature aging

phenotype. Accordingly, cohorts of male and female mice fed

ad libitumwere allowed to age and die of natural causes to deter-

mine life expectancy. Kaplan-Meier survival curves showed that

both female (p = 0.028) and male (p = 0.012) SMRTmRID1 mice

had shortened life span (Figure 2G). To determine whether
Inc.



Figure 1. Characterization of SMRTmRID1 Mutant

(A) Age-dependent upregulation of SMRT expression. Left: Tissue RNA samples (n = 6/group) were isolated from 2-month-old normal chow (2MNC), 6-month-old

normal chow (6MNC), and 6-month-old high-fat-fed (6MHF) C56BL/6malemice. The expression ofSmrtwas determined by real-time PCR. Right: SMRT protein

was immunoprecipitated from 2- and 6-month-old tissues, quantified by western blotting, and normalized to actin signal of the inputs (see also Figure S1).

*p < 0.05, comparing 6-month-old to 2-month-old.

(B) Generation of SMRTmRID1 mice. Top: Diagram showing the domain structure of SMRT. In SMRTmRID1, the ISEVI motif in the CoRNR box of RID1 has been

mutated to ASEAA. RD1–3, repression domains 1–3; RID, nuclear receptor-interacting domain. Bottom: TheC-terminal regions of SMRT containing the twomajor

RIDs from WT (RID1 + RID2) and SMRTmRID1 mice (mRID1 + RID2) as well as a splice variant lacking RID2 (RID1) were cloned into an expression vector down-

stream of GAL4-DNA-binding domain (DBD) for interaction assays.

(C and D) Mammalian two-hybrid assays to quantify SMRTmRID1 and NR interaction. GAL4-DBD-SMRT RID constructs shown in (B) were cotransfected with the

ligand-binding domain (LBD) from various nuclear receptors fused to VP16 transactivation domain into AD293 cells, together with a luciferase reporter containing

GAL4-binding sites and a renilla luciferase internal control. VP16 alone was included for control.

(E) A competition assay showing PPARd competes more efficiently with VP16-RARa for interaction with SMRTmRID1 than WT SMRT. Increasing amounts of

untagged PPARd were cotransfected to determine the ability of PPARd to reduce GAL4-RID/VP16-RARa interaction.

(F) PPARd preferentially interacts with SMRT over N-CoR, demonstrated by mammalian two-hybrid assays.

(G) Mammalian two-hybrid assays to quantify LXR interaction with WT SMRT, SMRTmRID1, and N-CoR. Values are expressed as means ± SEM. Ligand concen-

trations: T3, 100 nM; all-trans retinoic acid, 100 nM; GW7647 (PPARa), 1 mM; GW1929 (PPARg), 1 mM; GW501516 (PPARd), 0.1 mM; T0901317 (LXRa/b), 1 mM.
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SMRTmRID1 mice developed age-related metabolic diseases,

metabolic studies were conducted in 6-month-old female

cohorts on chow diet. Similar results were found in male

SMRTmRID1 mice (Figure S2). SMRTmRID1 mice had elevated

levels of fasting serum triglycerides, cholesterol, glucose, insulin,

and leptin as well as reduced adiponectin concentrations

compared to control animals (Figures 3A–3C). Corticosterone

levels were not significantly different. Glucose tolerance tests

(GTT) and insulin tolerance tests (ITT) were performed to further

characterize the insulin sensitivity. Throughout GTT, serum

glucose was higher in SMRTmRID1 mice than in WT mice (Fig-
Cell M
ure 3D), which was consistent with increased glucose produc-

tion in primary hepatocytes (Figure S2E). ITT showed that

SMRTmRID1 mice weremore insulin resistant (Figure 3E). Further-

more, insulin-stimulated p-Akt was reduced in SMRTmRID1

muscle (Figure 3F, no significant difference in adipose tissue

and liver, data not shown). Muscle glucose transporter 4 (GLUT4)

levels were also reduced (Figure 3G). These defects led to

blunted insulin-induced glucose uptake in isolated soleus

muscle from SMRTmRID1 mice. These findings demonstrate

that SMRTmRID1 mice develop the metabolic syndrome,

including hyperlipidemia and insulin resistance.
etabolism 12, 643–653, December 1, 2010 ª2010 Elsevier Inc. 645



Figure 2. SMRTmRID1 Mice Show Premature

Aging Phenotypes

(A) SMRTmRID1 female mice gain more weight on

chow diet (n = 10/genotype).

(B and C) Body composition and bone mineral

density determined by DEXA in 6-month-old

female mice.

(D) The cataract phenotype in SMRTmRID1 mice.

9M, 9 months old; 20M: 20 months old.

(E) SMRTmRID1 mice (20 months old) exhibit

alopecia in abdominal and lower back areas. The

image also demonstrates hair graying.

(F) Rotarod test to examine sensorimotor coordi-

nation in 6-month-old female mice (n = 4/geno-

type).

(G) SMRTmRID1 mice have shortened life span.

Cohorts of female and male mice (n = 20/geno-

type) on normal chow were allowed to age and

die of natural causes to determine life expectancy

using Kaplan-Meier survival curves. Values are ex-

pressed as means ± SEM. *p < 0.05, comparing

WT to SMRTmRID1 mice.
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PPAR Signaling Pathways Are Suppressed
in SMRTmRID1 Mice
To identify metabolic pathways disturbed in SMRTmRID1 mice,

gene expression analyses were performed. In BAT from

SMRTmRID1 mice, the expression of medium-chain acyl-CoA

dehydrogenase (Mcad), uncoupling protein-3 (Ucp-3), Cidea

(a BAT marker), and several genes in the OXPHOS pathway

was downregulated compared to control animals (Figure 4A).

Levels of Ppard and Erra, two NRs known to regulate oxidative

metabolism, were also reduced. A similar reduction in genes en-

coding fatty acid oxidation and OXPHOS together with Ppara,

a main regulator of hepatic lipid metabolism, was observed in

the liver of SMRTmRID1 mice compared to control animals (Fig-

ure 4B). In contrast, the level of Cyp26a1, an RAR target gene,

was increased. In WAT, in addition to fatty acid oxidation and

OXPHOS genes, the expression of Pparg and its targets, Ap2

andAdiponectin, was decreased in SMRTmRID1mice (Figure 4C).

Leptin expression was not changed. The elevated circulating

leptin was likely due to increased total fat mass. In muscle,

OXPHOS genes were suppressed (Figure 4D). There was

a reduction in Glut4, although it was not statistically significant.

These data suggested that PPAR signaling pathways were sup-

pressed in SMRTmRID1 mice. In fact, both basal activity and

ligand activation of all three PPARs (GAL4-DBD-PPAR-LBD

constructs) were reduced in SMRTmRID1 preadipocytes/fibro-

blasts (Figure 5A). To assess PPAR activity on target genes,

chromatin immunoprecipitation (ChIP) of the endogenous

Mcad gene was conducted using antibody against SMRT and
646 Cell Metabolism 12, 643–653, December 1, 2010 ª2010 Elsevier Inc.
IgG as a control in primary mouse embry-

onic fibroblasts (MEFs). Mcad was used,

since it is a well-defined PPAR target

(Gulick et al., 1994), and its expression

was downregulated in multiple tissues in

SMRTmRID1 mice. The expression of

Mcad gene was reduced in SMRTmRID1

MEFs ± PPARd ligand (Figure 5B, insert),

which was associated with an increase in
SMRT occupancy of the PPAR response element (PPRE) on

Mcad promoter (Figure 5B). Similarly, SMRT occupancy on

Mcad PPRE was significantly higher in BAT and the liver of

SMRTmRID1 mice compared to control animals (Figure 5C). In

contrast, SMRT binding to the RAR response element (RARE)

of Cyp26a1was reduced, which was consistent with the in vitro

M2 interaction results (Figures 1C and 1D). To probe the rele-

vance of the current SMRTmRID1 model to the aging process,

we compared SMRT ChIP in tissues from 2- and 6-month-old

WT mice and found increased and decreased SMRT occupancy

onMcadPPRE andCyp26a1RARE, respectively, in 6-month-old

BATs and livers (Figure 5D). Thus, SMRTmRID1 mimics the age-

dependent modulation of SMRT activity. These observations

suggest that SMRTmRID1 suppresses the expression of genes

encoding fatty acid catabolism and oxidative metabolism in

part through inhibition of PPAR transcriptional activities. In addi-

tion, increased SMRT repressionmay contribute to the reduction

in mitochondrial OXPHOS capacity in aged individuals.

Reduced Mitochondrial Function in SMRTmRID1 Mice
To determine whether the altered gene expression pattern has

functional consequences, fatty acid b oxidation assays were

conducted in BAT organ culture and in primary cells using radio-

active tracers. We observed a 3-fold decrease in the rate of

b oxidation in BAT of SMRTmRID1 mice compared to that of

control animals (Figure 6A). Reduced fatty acid oxidation was

also observed in hepatocytes and preadipocytes isolated from

SMRTmRID1 mice. Furthermore, the ratio of mitochondrial DNA



Figure 3. SMRTmRID1 Mice Develop Meta-

bolic Diseases

(A–C) Blood chemistry analyses of fasting lipids,

glucose, insulin, and adipokine levels in

6-month-old female mice (n = 7/genotype) on

chow diet.

(D and E) Glucose tolerance test and insulin toler-

ance test. Mice were fasted 5 hr before the exper-

iments.

(F) SMRTmRID1 mice exhibit reduced insulin sensi-

tivity in muscle. Insulin signaling in muscle was

determined by insulin-stimulated phospho-Akt

(p-Akt). Mice (n = 5/genotype, showing represen-

tative samples from 3 individual mice) were i.p. in-

jected with PBS or insulin (2 U/kg body weight).

Muscle samples were collected 15 min later and

analyzed by western blotting. The level of total

Akt (t-Akt) was included for loading control.

(G) Insulin-stimulated glucose uptake conducted

in soleus muscle using radioactive 2-deoxy-

D-glucose. Right: Western blotting showing

GLUT4 protein levels in muscle from 3 individual

mice/genotype. Values are expressed as

means ± SEM. *p < 0.05, comparing WT to

SMRTmRID1 mice. Male mice showed similar

phenotypes (Figure S2).

Cell Metabolism

SMRT Regulates Mitochondrial Oxidative Metabolism
to nuclear DNA content was reduced in SMRTmRID1 muscle and

BAT, indicating reduced mitochondrial number in these tissues

(Figure 6B). Similarly, SMRTmRID1 MEFs had reduced mitochon-

drial staining by MitoTracker probes (Figure 6C). These results

suggested that the metabolic phenotype of SMRTmRID1 mice

was caused by reduced fat-burning capacity and compromised

mitochondrial oxidative metabolism. In fact, using metabolic ca-

ges, we determined that SMRTmRID1 mice consumed less

oxygen than WT mice (Figure 6D). They also exhibited a lower

core body temperature. There was no significant difference in

food intake or activity. Histological analyses demonstrated

increased BAT lipid accumulation and hepatic steatosis in

SMRTmRID1 mice (Figure 6E). There was no difference in WAT

morphology (Figure S3A). These data indicate that mitochondrial

function is a main target of SMRT in developing metabolic

disorders.

Increased Susceptibility to Oxidative Stress
in SMRTmRID1 Mice
Oxidative damage and diminished mitochondrial function

contribute to the process of aging (Balaban et al., 2005). A

common observation across different species is that the sensi-

tivity to oxidative stress inversely correlates with life span

(Kapahi et al., 1999; Kenyon, 2005). To determine the stress

response, we challenged WT and SMRTmRID1 primary MEFs

with hydrogen peroxide (H2O2) and assayed cell viability after

24 hr. SMRTmRID1 cells were more sensitive to oxidative

damage and exhibited decreased survival at a lower H2O2

concentration than WT cells (Figure 7A), which was accompa-
Cell M
nied by increased ROS production (Figure 7B). Similar results

were obtained with paraquat treatment (an ROS producing

agent) (Figure 7C). The decreased stress resistance correlated

with reduced expression of antioxidant genes (Figure 7D).

Furthermore, a 2-fold increase in SMRT expression achieved

by transient transfection in HepG2 cells (a human hepatoma

cell line) was sufficient to reduce antioxidant gene expression

and decrease survival upon H2O2 treatment (Figures 7E and

S4A). Downregulation of Catalase, Gpx1 and Sod1 in WAT,

Gstp1 and Gpx1 in muscle (Figure 7F), and Catalase in BAT

(data not shown) was also found in SMRTmRID1 mice. Oxidative

damage is believed to mediate cellular senescence (Colavitti

and Finkel, 2005), which could be assessed by senescence-

associated b-galactosidase (SA-b-gal) activity. By passage

10–12, many SMRTmRID1 MEFs exhibited an enlarged flattened

morphology, which stained positive for SA-b-gal (Figure 7G,

blue cell), whereas WT MEFs remained mostly b-gal negative.

A similar increase in the SA-b-gal activity was detected in

WAT from SMRTmRID1 mice (Figure 7G, bottom panel). To

provide causative evidence for the described defect, MEFs

were pretreated with PPARd ligand for 60 hr, which increased

stress resistance in SMRTmRID1 MEFs (Figure 7H). PPARd

ligand treatment upregulated Mcad, Catalase, Gpx1, and

Sod1 in WT and, to a lesser extent, in SMRTmRID1 cells,

whereas PPARd�/� MEFs exhibited increased susceptibility to

oxidative damage similar to that in SMRTmRID1 MEFs (Figures

S4B and S4C), suggesting that SMRT repression of PPARd

activity may contribute to the reduced oxidative resistance.

Pretreatment with N-acetylcysteine (NAC), an antioxidant, for
etabolism 12, 643–653, December 1, 2010 ª2010 Elsevier Inc. 647



Figure 4. Suppressed Fatty Acid Oxidation

and Oxidative Metabolism in SMRTmRID1

Mice

(A–D) Gene expression profiling by real-time PCR

of brown adipose tissue (BAT), liver, white adipose

tissue (WAT), andmuscle fromWT andSMRTmRID1

female mice on normal chow (6 months old, n = 6/

genotype) after 5 hr fasting. OXPHOS: oxidative

phosphorylation. Values are expressed as

means ± SEM. *p < 0.05, comparing WT to

SMRTmRID1 mice.

Cell Metabolism
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1 hr also completely rescued the phenotype of SMRTmRID1

MEFs (Figure 7I). In addition, NAC normalized the insulin

response of SMRTmRID1 mice in ITT (Figure 7J). These results

establish a link between suppressed mitochondrial function,

decreased stress resistance, and age-related deterioration by

SMRTmRID1.
determined by real-time PCR using a primer set flanking the PPAR response element (PPRE). A control pri

Mcad gene was included as a negative control. Insert: The expression ofMcadmRNA inWT and SMRTmRID1 M

by real-time PCR.

(C) SMRT occupancy on target gene promoter in WT and SMRTmRID1 mice. Brown adipose tissue (BAT) and li

(n = 3/genotype) for ChIP using anti-SMRT antibody. SMRT binding to Mcad PPRE or Cyp26a1 RARE (RAR

(D) SMRT occupancy on target gene promoter in 2- month-old (2M) and 6-month-old (6M) mice determined

*p < 0.05, comparing WT to SMRTmRID1 mice/cells or 2M to 6M.
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SMRT and Human Diseases
The human Smrt (N-cor2) gene is located

on chromosome 12. We conducted

preliminary analyses to examine potential

associations of single-nucleotide poly-

morphisms (SNPs) in the human Smrt

gene with either the risk of type 2

diabetes (T2D) or the level of high-molec-

ular-weight (HMW) adiponectin, an adi-

pokine that controls glucose and lipid

homeostasis. Genotyping was con-

ducted for 2745 patients with T2D and

3148 healthy controls (2422 males and

3221 females) from the Nurses’ Health

Study (NHS) and Health Professionals

Follow-Up Study (HPFS). After adjusting

for age and body mass index, we found

a major cluster of SNPs within intron 1
of the human Smrt gene that were nominally associated with

T2D (Figure 7K and Table S1). Clusters of SNPs associated

with adiponectin levels (NHS only) could be found in intron 1,

introns 15 and 16 (next to exons encoding SANT domain 2),

and introns close to the C terminus of Smrt gene, where exons

encoding RIDs are located (Figure 7K and Table S2). In line
Figure 5. Assessment of PPAR Signaling

in SMRTmRID1 Mice

(A) The transactivation activities of PPARs are sup-

pressed in SMRTmRID1 primary preadipocytes

derived from WAT. Preadipocytes/fibroblasts

were isolated from the stromal vascular fraction

of white fats. GAL4-DBD-PPAR-LBD constructs

were transfected with a GAL4-luciferase reporter

into these cells ± ligands. GAL4-DBD alone was

included as a control. Ligand concentrations:

GW7647 (PPARa), 1 mM; GW1929 (PPARg),

1 mM; GW501516 (PPARd), 0.1 mM.

(B) SMRTmRID1 reduces PPAR activity on target

gene promoter. Chromatin immunoprecipitation

(ChIP) was conducted in primary MEFs using anti-

body against SMRT or IgG as a control. SMRT

occupancy on endogenous Mcad promoter was

mer set amplifying a region 10 kb upstream of the

EFs ± GW501516 (PPARd ligand) was determined

ver samples were collected from 2-month-old mice

target) was determined by real-time PCR.

by ChIP. Values are expressed as means ± SEM.



Figure 6. SMRTmRID1 Inhibits Mitochondrial

Function

(A) Assessment of fatty acid b oxidation in brown fat (BAT)

organ culture, primary hepatocytes, and preadipocytes/

fibroblasts. The rate of fatty acid oxidation was deter-

mined by 3H-palmitate breakdown to 3H2O.

(B) Assessment of mitochondrial DNA content in BAT and

muscle. Mitochondrial DNA was quantified by real-time

PCR and normalized to nuclear DNA content.

(C) SMRTmRID1 MEFs have reduced mitochondrial

content. MitoTracker staining (green fluorescence) was

conducted to determine mitochondrial content.

(D) SMRTmRID1 mice show reduced O2 consumption and

lowered body temperature. O2 consumption, activity,

and food intake were determined by metabolic cages.

(E) Histological analyses of BAT and liver sections (H&E

staining) to examine lipid accumulation (see also Fig-

ure S3). Tissue triglyceride (TG) content was measured

by enzymatic assays. Muscle, BAT, and preadipocytes

were isolated from 6-month-old mice. Primary hepato-

cytes were from 2.5-month-old mice. Values are

expressed as means ± SEM. *p < 0.05, comparing WT to

SMRTmRID1 mice/cells.
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with the SNP data, we found an increase in SMRT binding to the

PPRE of Adiponectin promoter in SMRTmRID1 adipocytes (Fig-

ure 7L). In addition, adiponectin administration to normalize the

circulating concentration in SMRTmRID1 mice reduced the blood

glucose level to that of WT animals (Figure 7M). Adiponectin also

reverted the increased glucose production phenotype in

SMRTmRID1 primary hepatocytes (Figure S2E). These data

suggest that Adiponectin is a potential target of SMRT.

DISCUSSION

In this study, we use SMRTmRID1 mice to investigate the effects

of SMRT repression on RID2-associated NRs. SMRTmRID1 mice

show depressed mitochondrial function, partly mediated by

inhibition of PPAR activities. This defect is accompanied by

increased sensitivity to oxidative damage, accelerated aging,

and development of metabolic deterioration. The expression

of SMRT is upregulated with age in tissues that normally

have high OXPHOS, which is associated with increased

SMRT occupancy on PPAR target gene promoters. The current

work provides a potential mechanism through which SMRT

reduces metabolic rate and mediates age-related metabolic

diseases.
Cell Metabolism 12, 643
The specificity of SMRT/NR interaction is

determined by RID1/2, together with the third

RID (upstream of the two RIDs) and splice vari-

ants lacking RID2. Our data indicate that when

RID1 was mutated, PPAR/SMRT association

was greatly enhanced (Figure 1D), indicating

that RID1/2 and NR interaction is competitive.

However, this competition mode is specific, as

RID1 mutation did not affect TR/RID2 interac-

tion. Interestingly, ChIP results suggest a switch

of SMRT utilization from RID1-dependent to

RID2-dependent NRs with age, as demon-

strated by promoter occupancy of the
Cyp26a1 RARE and Mcad PPRE. It has been shown that the

expression of Rars is reduced by aging (Pallet et al., 1997), which

may be responsible for the reduced SMRT recruitment to the

Cyp26a1 promoter and may increase SMRT availability for

PPARs. The SMRTmRID1 mouse model mimics this switch and,

as such, offers a unique opportunity to distinguish the pathways

regulated by RID2 involved in age-related pathophysiology.

Several mouse models have been generated to examine the

function of SMRT and N-CoR in NR function, including N-CoR

point mutations, which abolished HDAC3 recruitment and ex-

hibited defects in circadian clock gene expression controlled

by Rev-erba (Alenghat et al., 2008), and conditional deletion of

the region containing RID1 and the third RID of N-CoR in the liver,

which led to dysregulated thyroid hormone action (Astapova

et al., 2008). Point mutations that abolished both RID1 and

RID2 interaction of SMRT in mice (SMRTmRID mice in a mixed

C57BL/6 and sv129 background) also showed abnormal TR

signaling and the associated metabolic defects (Nofsinger

et al., 2008). These mice had increased fat-to-body weight ratio

caused by uncontrolled PPARg activation, although they gained

significantly less weight. Using stable MEFs derived from WT,

SMRTmRID1, or SMRTmRID mice in the mixed background, we

also observed compromised antioxidant defense capacity in
–653, December 1, 2010 ª2010 Elsevier Inc. 649



Figure 7. Increased Susceptibility to Oxidative Damage and Premature Senescence in SMRTmRID1 Cells

(A) Increased susceptibility to oxidative stress in SMRTmRID1 primary MEFs. WT and SMRTmRID1 MEFs were treated with H2O2 to induce oxidative stress, and cell

survival was determined 24 hr later.

(B) Elevated ROS production in SMRTmRID1 MEFs determined by CM-H2DCFDA.

(C) SMRTmRID1 MEFs exhibit reduced survival upon paraquat treatment.

(D) Downregulation of antioxidant genes in SMRTmRID1 MEFs determined by real-time PCR.

(E) SMRT overexpression reduces stress resistance in HepG2 cells. HepG2 cells were transfected with either the empty vector (control) or SMRT expression

vector to achieve a 2-fold increase in Smrt mRNA levels (see Figure S4A). H2O2 treatment started 24 hr after transfection.

(F) Reduced tissue expression of genes encoding antioxidant defense mechanism in SMRTmRID1 mice determined by real-time PCR.

(G) SMRTmRID1 cells show premature senescence. Top: WT and SMRTmRID1 MEFs at passage 12 were stained with X-gal to examine senescence-associated

b-galactosidase (SA-b-gal) activity (blue cells). Bottom: SA-b-gal activity in white adipose tissues from 6-month-old mice. The blue staining in tissue lysate

was quantified and normalized to protein concentration.

(H) PPARd activation rescues the phenotype of oxidative stress response in SMRTmRID1 cells. PPARd ligand pretreatment (0.1 mMGW501516 for 60 hr) increased

the survival of SMRTmRID1 cells.

(I) Antioxidant pretreatment normalizes the stress resistance of SMRTmRID1 MEFs. Cells were treated with 0.5 mM N-acetylcysteine (NAC, an antioxidant) 1 hr

before H2O2 treatment.

(J) Insulin tolerance test showing NAC treatment reverts the reduced insulin response in SMRTmRID1 mice. NAC (10mg/ml) was given in drinking water for 1 week.

The difference between WT and SMRTmRID1 mice (n = 5/genotype, 6- to 8-month-old females) for each time point without NAC treatment was statistically signif-

icant (not significant after treatment).
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SMRTmRID1 cells (Figures S3C–S3E). While we confirmed that

SMRTmRID MEFs had increased PPARg activity, their ability to

handle oxidative stress was comparable to WT cells. It is not

unexpected that SMRTmRID MEFs did not outperform WT cells

in stress resistance, as PPARd activation (or NAC treatment)

did not shift the survival curve in WT MEFs. These two models

therefore provide in vivo evidence supporting a specific role of

RID2 for PPAR function. The current SMRTmRID1 mouse study

reveals that shifting SMRT repression to increase RID2-medi-

ated interaction to receptors like PPARs results in accelerated

aging and metabolic syndrome.

Both Smrt and N-cor whole-body knockout mice are embry-

onic lethal, indicating nonredundant functions for these core-

pressors (Ghisletti et al., 2009; Hermanson et al., 2002; Jepsen

et al., 2007). Our data demonstrate age-dependent upregula-

tion of N-cor mRNA in the liver (Figure S1A) and Smrt mRNA

in muscle and BAT, both of which play important roles in fat

burning and oxidative metabolism. At the protein level, SMRT is

increased inWAT, in addition toBAT andmuscle in older animals.

Although SMRT expression in the liver remains unchanged in

older mice, there is also more hepatic SMRT binding to Mcad

PPRE with age. These observations implicate a multitier regula-

tion of SMRT activity by aging and predict a role for SMRT in

major metabolic tissues. In fact, transcriptional programs

encoding OXPHOS and fatty acid catabolism pathways are

downregulated in most of these tissues in SMRTmRID1 mice. We

attribute this phenotype to increased suppression of PPAR activ-

ities by themutant SMRT protein, as PPARs are major regulators

of oxidative metabolism and the expression of Ppard, Ppara, and

Pparg was downregulated in BAT, liver, and WAT of SMRTmRID1

mice, respectively. In M2 interaction and ChIP assays,

SMRTmRID1 and PPAR association was enhanced. As a result,

the transactivation activities of PPARs were reduced in primary

cells isolated from SMRTmRID1 mice. The adipogenic potential

of SMRTmRID1 preadipocytes was only moderately affected,

possibly due to the fact that the inhibition of PPARg activity

was partial and levels of other adipogenic transcriptional factors,

including C/ebpb and C/ebpd, remained similar (Figure S3B).

Accordingly, the obesity phenotype of SMRTmRID1 mice is likely

mediated by reduced mitochondrial metabolic capacity. Of

note, under unchallenged conditions, the hearts of SMRTmRID1

mice appeared morphologically normal and the expression pat-

tern of OXPHOS was mostly unaltered (except for a reduction

in Gpx1 [Figure S2D]), suggesting that SMRT is less critical in

this tissue. We cannot rule out the possibility that other potential

RID2-associated NRs, such as ERRa, may contribute to the

deregulated mitochondrial function. However, ERRa and SMRT

do not interact in vitro (data not shown). Derepression of RID1-
(K) The associations of SNPs in human Smrt (N-cor) gene with the risk of ty

concentration, annotated with the gene structure (bottom panel: exons are sh

and linear regression (HMW adiponectin) analyses. All identified SNPs are show

0.05) (see also Tables S1 and S2).

(L) ChIP showing increased SMRT binding on the PPRE of Adiponectin promoter

mice. IgG ChIP or 10k b upstream negative controls showed no specific binding

(M) Adiponectin administration normalizes the glucose level in SMRTmRID1 mic

increased the serum adiponectin level similar to that in WT mice (shown on the

Values are expressed as means ± SEM. *p < 0.05, comparing WT to SMRTmRID1

Cell M
associated NRs, such as RARs, could also contribute to the

phenotype. Although the role of RA signaling in metabolism is

less defined, it has been shown that retinaldehyde, the precursor

of RA, modulates metabolic homeostasis partly by suppressing

PPARg responses (Ziouzenkova et al., 2007). Therefore, dysre-

gulated RA/RAR activities could also have an impact on PPAR-

mediated regulation. Interestingly, RAR signaling in embryonic

development seems to be unaffected in SMRTmRID1 mice, prob-

ably because the RID1 mutation does not completely abolish

RAR/SMRT interaction and/or because N-CoR provides suffi-

cient repression function. Regardless, these results demonstrate

a function for SMRT in the control of oxidative metabolism.

Although assessment of stress resistance inMEFs is one of the

standard approaches for aging studies, the limitation of such an

assay is that it provides correlative results. It is also possible

that the observed mitochondrial dysfunction is a consequence

ofmetabolic defects. However, several lines of evidence indicate

that SMRT suppression of mitochondrial function and the anti-

oxidant defensemechanismaccelerates aging and relatedmeta-

bolic diseases. SMRT overexpression in HepG2 cells was suffi-

cient to reduce antioxidant gene expression and stress

resistance, whereas NAC treatment normalized the stress and

insulin responses in SMRTmRID1 MEFs and mice, respectively.

In addition, PPARd activation, which enhanced mitochondrial

function, also rescued the phenotype of increased sensitivity to

oxidative damage in SMRTmRID1 MEFs. Population-based

studies further demonstrate nominal association of human Smrt

gene SNPs with T2D and levels of adiponectin. Adiponectin is

a PPARg target gene known to regulate mitochondrial function

and metabolism through activation of AMP-activated kinase

(AMPK) (Kadowaki and Yamauchi, 2005; Kahn et al., 2005).

AMPK has also been shown to control longevity in C. elegans

(Greer et al., 2009). Most of the SNPs are located in intron 1

and introns close to exons encoding SANT domain 2 and RIDs.

These SNPs may modify the expression and/or splicing of

Smrt, which are expected to affect the suppressive activity and

NR interacting preference. Additional work will be required to

determine the functional relevance of these SNPs in human

Smrt gene to define the relationship between SMRT, age-related

decline in mitochondrial function, and human diseases. The

current study establishes a molecular basis for designing thera-

peutic approaches that release SMRT RID2-mediated repres-

sion, such as PPARd agonists, to increase the mitochondrial

integrity and reduce oxidative stress. Future work aiming to iden-

tify pathways that upregulate (or downregulate) SMRT and

examine the interaction between dietary fats, PPARs, and

SMRTwill further provide insights into drug discovery to improve

health span.
pe 2 diabetes (T2D) and plasma high-molecular-weight (HMW) adiponectin

own). The y axis represents �log(p value) from the logistic regression (T2D)

n. The red lines represent the associations of nominal significance (p value <

in SMRTmRID1 adipocytes. Primary adipocytes were isolated from 2-month-old

s (data not shown).

e. Tail vein injection of 10 mg recombinant adiponectin in SMRTmRID1 mice

right), which normalized the blood glucose concentration (shown on the left).

mice/cells.
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EXPERIMENTAL PROCEDURES

SMRTmRID1 Mice and Metabolic Studies

SMRTmRID1 mice were provided by Ronald M. Evans at the Salk Institute and

were generated similarly to SMRTmRID mice (mutations in both RID1 and RID2)

in a mixed background (50% sv129 and 50% C57BL/6) as described previ-

ously (Nofsinger et al., 2008). The detailed methodology of SMRTmRID1 mouse

generation will be reported elsewhere. They were backcrossed two genera-

tions to the C57BL/6 background (87.5%). Heterozygous mice were mated

to create cohorts of age-matched WT and SMRTmRID1 mice. Six-month-old

female and male mice were used to assess metabolic capacity after 5 hr

fast. Experiments were repeated and data were collected from multiple

cohorts (n = 5–8/cohort/genotype). GTT was performed by intraperitoneal

(i.p.) injection of 1.5 g glucose/kg body weight, and ITT was conducted using

1 U insulin/kg. Recombinant adiponectin protein (AXXORA, LLC) was admin-

istered through tail vein (10 mg), and blood samples were collected 1 hr later

for glucose and adiponectin concentration analyses. Control PBS injection

had no effect. Tissue-specific insulin signaling was determined by i.p. injection

of 2 U insulin/kg or control saline. Tissues were collected 15min later for deter-

mining insulin-stimulated Akt phosphorylation using anti-Ser473 Akt antibody

(Cell Signaling). Serum hormones weremeasured using commercial ELISA kits

(R&D Systems, Millipore, and Cayman Chemicals). Metabolic cage studies

were performed using a monitoring system from Columbus Instruments.

Sensorimotor coordination was assayed with a fixed-speed Rotarod (4 rpm).

Statistics analyses were performed using Student’s t test (two-tailed), except

for survival curves, which were determined using theMantel-Haenszel log rank

test. All mice were housed in a barrier facility, fed normal chow, and kept on

a 12 hr light/12 hr dark cycle. Animal studies were approved by the Harvard

Medical Area Standing Committee on Animals.

Primary Cells and In Vitro Assays

Hepatocytes were isolated by portal vein perfusion with blendzyme (Roche)

and cultured in William’s Medium E with 5% FBS. Primary preadipocytes/

fibroblasts were derived from the stromal vascular fraction of WAT after colla-

genase digestion. The rate of fatty acid b oxidation was determined by

measuring 3H-palmitate breakdown to 3H2O. The glucose uptake assay was

conducted using 2-3H-deoxy-D-glucose in Krebs-Ringer bicarbonate HEPES

buffer ± 100 nM insulin. MEFs were isolated from e15 embryos. For the oxida-

tive stress assays, MEFs (or HepG2 cells) were plated to confluence and al-

lowed to attach overnight. H2O2 or paraquat was added to the indicated final

concentration, and the cells were incubated for another 24 hr. NAC (0.5 mM)

was added for 1 hr and removed prior to H2O2 treatment. To examine the

ligand effect, cells were plated in media ± 0.1 mM GW501516 for 60 hr before

H2O2 treatment. Cell survival was assayed using the ATP bioluminescent

somatic cell assay kit (Sigma-Aldrich). ROS production was determined by

incubating MEFs ± 5 mM CM-H2DCFDA (Invitrogen) for 30 min. Fluorescence

units were measured and normalized to protein concentration. ChIP of early-

passage MEFs or tissues was performed using the SimpleChIP Enzymatic

Chromatin IP kit (Cell Signaling). The primer pair used for real-time PCR was

based on the reported PPRE onmouseMcad (Gulick et al., 1994) or Adiponec-

tin promoter (Iwaki et al., 2003). A second pair located 10 kb upstream of the

Mcad/Adiponectin gene was included as a negative control. The primers for

RARE on mouse CYP26a1 promoter were described previously (Loudig

et al., 2000). Anti-SMRT antibody was from Santa Cruz Biotechnology.

Mitochondrial DNA Content, Gene Expression, Transient

Transfection, and SNP Analysis

Relative mitochondrial DNA and nuclear DNA levels were determined using

real-time PCR primers specific to mitochondrial gene NADH dehydrogenase

subunit 1 (Nd1) and genomic gene 36B4. RNA was reverse transcribed with

oligo-dT and random hexamer primers (Thermo Scientific), and gene expres-

sion was determined by SYBR Green-based real-time PCR using 36B4 for

normalization. The expression in human HepG2 cells was normalized to 18S.

To determine SMRT protein levels, tissue lysates were subjected to immuno-

precipitation with anti-SMRT antibody (Santa Cruz Biotechnology), followed

by immunoblotting (Figures S1B and S1E). For normalization, actin levels in

the input were determined. Quantification was performed using ImageJ. The

mammalian two-hybrid assay was conducted in AD293 cells cultured in dia-
652 Cell Metabolism 12, 643–653, December 1, 2010 ª2010 Elsevier
lyzed FBS depleted of steroid/nonsteroid hormones and lipoproteins to reduce

NR ligands in the media. Luciferase activities were determined 48 hr after

transfection using the Dual-Luciferase System (Promega). HepG2 cells were

transfected with control or SMRT expression vectors 24 hr prior to the oxida-

tive stress assay. All of the expression vectors were under the control of a CMV

promoter. The populations, data collection, and statistical analyses for human

Smrt gene SNPs are described in the Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

Supplemental References, four figures, and two tables and can be found

with this article online at doi:10.1016/j.cmet.2010.11.007.
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