
Journal of Gerontology: BIOLOGICAL SCIENCES
1998. Vol. 53A, No. 3, B2I7-B230

Copyright 1998 by The Gerontological Society of America

Mortality and Biomarkers of Aging
in Heterogeneous Stock (HS) Mice

Debra A. Heller,12 Frank M. Ahem,12 J. Tobias Stout,2 and Gerald E. McClearn 1,2

'Department of Biobehavioral Health, and 2Center for Developmental and Health Genetics, The Pennsylvania State University.

A longitudinal study was undertaken to evaluate the relationships among a battery of aging biomarkers and subse-
quent survival time in 319 genetically heterogenous stock (HS) mice. The biomarker variables chosen were selected
from the broad domains of behavior, homeostatic physiology, oxidative defense, and immune function; biomarkers
were measured at 45, 90, 360, 630, and 900 days of age. Sex differences were found in the survivor and mortality
functions, with a mortality rate crossover occurring at about 525 days and a survival curve crossover at about 750
days of age. Females experienced lower initial mortality but had more sharply increasing mortality with age than
did males. Survival analysis using Gompertz parametric models with biomarkers as time-varying covariates yielded
significant biomarkers from each domain. Following backward elimination procedures, the final set of independent
mortality predictors included headpokes in the File activity apparatus, maximum cord drop time, weight, hemat-
ocrit, urine concentration, natural killer cell activity, and concanavalin A response.

AMAJOR gerontological emphasis in recent years has
focused on the identification of biological markers, or

biomarkers, of aging. Although variously defined, the term
biomarker is generally accepted to refer to a variable that is
capable of measuring some dimension of physiological or
functional age. As Baker and Sprott (1) noted, a key as-
sumption in biomarker-related research is that there are
biological parameters that perform better than chronologi-
cal age in predicting physiological or functional age. Im-
plicit in this assumption is the acknowledgement that indi-
viduals of the same chronological age may vary in their
physiological age. Biomarkers of physiological age, there-
fore, can offer great utility to studies on aging, both in the
elucidation of basic and individual processes involved in
senescence and in the evaluation of the effects of inter-
ventions. The theoretical and methodological issues central
to biomarker research have been reviewed by previous
authors, including Reff and Schneider (2), Baker and Sprott
(1), Ingram (3), and McClearn (4-6).

A number of necessary attributes for biomarkers of aging
have been discussed (3,6-8). Several key expectations are
that biomarkers should (i) change with time in a manner
that reflects the rate of physiological aging, (ii) be capable
of differentiating age-related change from disease pro-
cesses, (Hi) demonstrate adequate reliability of measure-
ment, and (iv) be nonlethal and able to be measured nonin-
vasively, with minimal trauma to animal or human subjects.

In contrast to the general consensus regarding many
requirements of biomarkers and biomarker-related research,
the expectations regarding relationships between biomark-
ers of aging and longevity are less clear. In an early discus-
sion, Brown and Forbes (9) suggested two important condi-
tions for biomarker validity: biomarkers should reflect the
probability of death at a given chronological age, and indi-
viduals who have died should have abnormal levels relative
to living individuals of the same chronological age (9,10).

The expectation that biomarkers should predict longevity
is reasonable in terms of classic theories of aging that relate
declining physiological functioning, or vitality, to aging
and death (11-13). In these models, population mortality
rates are expressed as joint functions of external chal-
lenges, which vary in their severity, and declines in vitality,
which may be conceptualized as energy required to over-
come the environmental challenges. When individuals en-
counter challenges that exceed their vitality, death occurs.
It has been demonstrated that Gompertz rates of mortality
can result from such theoretical functions of vitality and
external challenges (11,13).

To assume that, because aging ultimately leads to death,
biomarkers of aging should predict age at death may be
simplistic, however. Age at death may be confounded with
disease or external factors that are largely independent of
age-related effects (1). In addition, although vitality is the-
oretically conceptualized as monotonically declining, it is
likely that individuals fluctuate in response to disease or
stressors. Despite an overall declining trend in vitality,
local excursions downward may be followed by compen-
satory increases in vitality due to recovery or adaptation to
stress (6). If an individual is sufficiently distant from some
lethal threshold, then recovery is probable, but if close to
the threshold, compensatory recovery may be impossible.
Under this conceptual framework, the expectation of age at
death may be obtained from the mean trajectory in vitality
loss, but there are a number of possible death dates depend-
ing on individual fluctuation (6). Thus, although correlation
with longevity is a desirable characteristic for a biomarker,
the timing of death may be relatively imprecise in relation
to physiological age.

Aside from these conceptual issues, studies relating
biomarkers to survival are also subject to practical limita-
tions in measuring the effects of biomarkers on longevity.
There is little question that methods appropriate to the
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analysis of survival data, such as those incorporating para-
metric (e.g., Gompertz) or semiparametric (e.g., Cox) mod-
els should be used to evaluate the effects of biomarker lev-
els within the context of age-associated increases in
mortality rates. Other questions remain, however, includ-
ing: (i) Will the effects of biomarkers be assessed indepen-
dently or in the aggregate? (ii) When will biomarkers be
measured? (Hi) Will biomarkers be treated as time-constant
or time-varying covariates? (iv) Is a given level of a bio-
marker assumed to have the same impact on mortality risk
regardless of age? In considering these questions it be-
comes clear that, for any aging study, there are a number of
alternative approaches that may be undertaken to investi-
gate relationships between biomarkers and mortality.

Although several major human epidemiological studies
have examined the associations among physiological vari-
ables and longevity (14,15), relatively few studies using ani-
mal models have examined relationships among multiple
physiological or behavioral biomarkers of aging with subse-
quent longevity in genetically heterogeneous animals. Most
animal studies to date linking biomarker values with mortal-
ity have involved (i) inbred or selected strains, such as the
senescence-accelerated mouse strain SAM (16,17); (ii) asso-
ciations of specific genetic markers or single traits (e.g., coat
color, histocompatibility haplotype, body weight) with
longevity (18-23); or (Hi) the evaluation of specific aging
interventions, most notably dietary restriction (24-26).

The primary goal of the present study was to evaluate the
relationships among a battery of putative aging-related
biomarkers and survival time in a sample of genetically het-
erogenous mice. To do so, we evaluated the independent
effects of each biomarker and identified the most parsimo-
nious set of candidate biomarkers that best predict survival.
Because data on biomarker levels were available from five
repeated occasions of testing, updated biomarker values
were used as time-varying covariates in our survival mod-
els. Finally, within the constraints of the methods used in
the present study, a given level of a biomarker is assumed
to have a constant effect on mortality risk regardless of the
age of measurement. For example, a specific hematocrit
level is assumed to confer the same degree of risk or pro-
tection regardless of the age of the subject. These caveats
and assumptions should be kept in mind throughout the fol-
lowing discussion.

METHODS

Animals
The house mouse, Mus musculus, has proven useful as an

animal model for many aging processes (27), and a number
of candidate biomarkers have been proposed based on stud-
ies of inbred mice (28,29). Because of their genetic homo-
geneity, inbred mouse strains have proven invaluable in
gerontological research by providing a solid, replicable
basis for animal models of aging (4). However, designs
employing only genetically identical animals suffer from
limitations in assessing relationships among variables
because all variance is environmental in origin (30,31). An
alternative approach is to use genetically heterogeneous
mice, such as the heterogeneous stock (HS) (30) which

allows evaluation of genetic as well as environmental co-
variation in the mediation of relationships among biomarker
variables. The present study was conducted as part of a
larger investigation of biomarkers of aging in two genera-
tions of HS mice (32).

All mice were of the genetically heterogeneous HS strain,
which was originally established by intercrossing eight
inbred strains (30). The HS stock has been systematically
maintained by random mating, with approximately 40 mat-
ing pairs in each generation. For the current study, breeding
pairs were imported from the Institute for Behavioral Genet-
ics (IBG) in Boulder, CO, to a specific pathogen-free (SPF)
barrier facility at The Pennsylvania State University. The
breeding generation was introduced to the barrier facility by
caesarean-derivation and cross-fostering onto gnotobiotic
Swiss females. Subsequently, these mice were mated by
using the same systematically random procedures used in
the maintenance colony at IBG (random matings with the
restriction that cousin matings are avoided), yielding two
generations for study—a parental generation and a second
offspring generation. All mice were housed individually
(except during breeding) in the barrier facility with a 12-h
light/dark cycle. Food (NIH 31, open formula autoclavable
mouse ration) and water were provided ad libitum; cages
were changed weekly.

Study Design and Biomarker Measures
The design for this study was longitudinal, with five test-

ing occasions at 45, 90, 360, 630, and 900 days of age.
Biomarker variables were drawn from several broad do-
mains: behavior, homeostatic physiology, oxidative defense,
and immune functioning. Biomarkers were chosen on the
basis of their ability to be measured nonlethally and nonin-
vasively and on the basis of associations with age and physi-
ological functioning as demonstrated in previous work done
in our laboratory and by others (2,4,33). The biomarker vari-
ables included in the test battery are described in Table 1.
Most biomarkers were measured at all five occasions. Ex-
ceptions include tail tendon fiber break time (LMAXTT),
which was measured at occasions at 90, 360, 630, and 900
days, and the arachidonic acid metabolites thromboxane B2
(LTXB) and 6-keto-PGFl-a (LKETO), which were mea-
sured at 45, 90, 360, and 630 days. Variables showing sig-
nificant deviation from normality were log-transformed
prior to statistical analysis. Details regarding the study
design and measures have been provided elsewhere (32).

Mice were checked daily for morbidity or death. Mori-
bund animals were evaluated by appearance, posture, activ-
ity, behavior, and weight loss. All dead animals were
necropsied, and pathology reports were prepared that evalu-
ated cause of death where possible. Age at death was re-
corded in days for all animals.

Analyses

Nonparametric survival analyses.—Life tables and sur-
vival curves were constructed using the SAS LIFEREG pro-
cedure. Kaplan-Meier survival probability estimates were
computed separately for male and female mice. Equality of
survival curves for males and females was tested with log-
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Table 1. Biomarker Variables Used in Survival Analysis

Biomarker Variable Description of Measure

Behavior

File Activity (FACTIV)

File Rears (LFREARS)'

File Headpokes (FHDPK)

File Boli (FBOLI)

File Urine (FDURN)

Cord Drop Time (MAXCDT)

Homeostatic Physiology

Body weight (WT)

Tail tendon fiber break time (LMAXTT)'

Glucose 0 (GLUCO)

Glucose 40 (RGLUC40

Hematocrit 0 (HEMAO)

Hematocrit 40 (RHEMA40)

Urine 0 (URINEO)

Urine 24 (RURIN24)

Immune System

Concanavalin A (LCONA)'

Conjugates (CONJ)

Dead Targets (DTAR)

Lymphocytes (LYMPHS)

White Blood Cells (WBC)

Natural Killer 25:1 (LNK25)'

Oxidative Defense

Glutathione Peroxidase (GSHPX)

Thromboxane (LTXB)'

Prostacycline (LKETO)"

Thromboxane:Prostacycline Ratio (TKRAT)

Number of squares entered in File exploratory apparatus in 3 min

Number of rearings (vertical movements) in File exploratory apparatus in 3 min

Number of headpokes through holes in floor of File exploratory apparatus in 3 min

Number of boli deposited in File apparatus during 3-min period

Dichotomous measure of urination in File apparatus during 3-min period; 0 = no urine; 1 = any
urine

Amount of time mouse successfully hangs by forepaws on a tight wire; maximum score from
three 60-sec trials

Body weight in grams

Time for tail tendon fibers to break with 2-g weight attached while suspended in 7 M urea at pH

7.5 and 45°C; maximum of 4 fibers

Baseline plasma glucose level expressed in mg/dl following a 12-h fast

Change in plasma glucose level (mg/dl) 40 min after an intraperitoneal injection of 20 mg percent

solution of glucose (2 g/kg body weight); regression residual score from baseline

Percent of red blood cells in a blood sample following a 12-h fast

Percent of red blood cells 40 min after the glucose injection (for Glucose 40); regression residual

score from baseline

Baseline urine osmolality expressed in mOsml/kg

Urine osmolality following a 24 h period of water deprivation expressed in mOsml/kg (a measure
of urine concentrating ability); regression residual score from baseline

Proliferative response of lymphocytes to the mitogen Con A, expressed in counts/min

Percent of lymphocytes attached to target cells (tumor cell line YAC-1)

Percentage of target cells (tumor cells) identified as dead by trypan blue exclusion test

Percentage of lymphocytes in whole blood

White blood cell (leukocyte) count in whole blood, expressed as total cells/(aL

Natural killer cell activity against a tumor target, ratio of 25 lymphocytes to 1 target

Selenium-dependent glutathione peroxidase levels in blood expressed as (micromoles H2O2 con-

sumed/min)/mg hemoglobin

Plasma thromboxane B2 levels, expressed as pg/ml plasma

Plasma prostacycline metabolite: 6-keto-PGFl-a (levels expressed as pg/ml plasma)

Ratio of TXB:6-keto-PGFl-a

"Log-transformed.

rank and Wilcoxon statistics. Hazard functions for males
and females were also estimated using Kaplan-Meier meth-
ods and subjected to kernel-smoothing (34) using a SAS
macro written by Paul Allison (35).

For the survival analyses, mice were characterized as
either censored or noncensored. Censored animals were
those who experienced accidental, testing-related, or repro-
ductive-related deaths. The procedures used for the survival
analyses enabled the use of information for censored animals
up until the time they experienced death.

Parametric survival models.—Although the relationship
between biomarker variables and survival may be addressed
by using either parametric or semiparametric (36) survival
models, parametric methods were chosen to allow examina-
tion of the time dependence of mortality in the study popu-

lation. The Gompertz distribution, which has been the most
widely used model in mortality studies, describes mortality
as an exponentially increasing function of time,

\x(t) = ae9',

in which u(f) is the mortality rate at time t, a is the initial
mortality rate (e.g., mortality rate at reproductive maturity),
and 0 is the Gompertz exponent, which describes the rate of
acceleration of mortality with age. Many studies have
demonstrated the failure of the Gompertz to describe mor-
tality at very late ages, where mortality rates cease to
increase exponentially or become constant (37-39); these
failures of the Gompertz have been most often attributed to
genetic heterogeneity (40,41). Despite these disadvantages,
the Gompertz distribution offers two key advantages: it fits
mortality, particularly all-cause mortality, well at most ages
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for many populations, and its parameters have been well
characterized theoretically in terms of thermodynamic
descriptions of aging (11,13,14,42,43).

To examine the mortality kinetics of the study popula-
tion, graphical, parameter-free methods were initially used
to visually inspect the correspondence between survival or
mortality functions and several parametric distributions,
including exponential, Weibull, Gompertz, and log-logistic
functions (44). Exponential and Gompertz parametric sur-
vival models were tested by using maximum-likelihood
model fitting with the BMDP Statistical Software program
P3R for nonlinear regression, in conjunction with the For-
tran subroutine program P3RFUN written by Trond Petersen
(44; T. Petersen, PhD, personal communication, November
1996). The fits of parametric models were evaluated using
log-likelihood criteria.

Time-varying covariates.—Because the longitudinal de-
sign included five test occasions throughout the life span,
the biomarker variables were used as time-varying covari-
ates in the survival analysis. Problems may arise when
event times (deaths) are measured more accurately than
time-varying covariates are measured, as in the present
case, in which age at death was measured in precise days,
whereas biomarker levels were only assessed at regular
intervals. Allison (35) and others (44,45) have discussed
various strategies to handle such data. For our analyses, we
chose to allow the biomarker covariates to vary over time as
step functions, in which levels at each testing occasion
were assumed to remain as such throughout the entire inter-
val until the next test occasion. Because testing took place
over several weeks and some mice either became moribund
or died prior to completing all testing, deaths around the
testing times could confound the analysis, resulting in the
comparison of some mice's prior test data with other mice's
current values. To avoid this problem, the covariate values
were lagged by 21 days. For example, covariate values at
45 days were used to predict deaths up through 110 days,
90-day data were used for times between 111 and 380 days,
etc. To facilitate the analysis of the biomarkers as time-
varying covariates, a mouse-occasion, or subepisode, file
was constructed that contained 1150 mouse-occasion rec-
ords and included test occasion, interval start and end
times, censoring (e.g., accidental death) information, and
biomarker values (44,46). In this manner the file consisted
of subepisodes encompassing biomarker measurements
from one to five separate occasions of measurement over
each mouse's lifespan.

Missing data procedures.—Even with lagged covariates,
missing data values were observed for 2.6% of all poss-
ible values. Missing data analysis was conducted, and no
consistent patterns were observed regarding the nature of
variables with missing data or for the specific mice with
missing data. Missing data were most often due to nonmea-
surement of specific mice or occasional problems with the
sample or assay procedures. We concluded that the missing
data showed the pattern of being missing completely at ran-
dom (MCAR) (47). Because the survival analytic proce-
dures used require complete cases, severe sample size

reduction and loss of power occurs with the deletion of all
cases with any missing data, even though the total number
of missing data points was small. Various mechanisms for
adjusting the missing values have been proposed, some of
which have been shown to result in severe bias (48). Maxi-
mum-likelihood procedures, such as the Expectation-Maxi-
mization (EM) algorithm (47), result in less bias than tradi-
tional procedures (48). The EMCOV procedure (49) is an
iterative imputation procedure in which missing values are
imputed by using all other variables and standard errors are
obtained by bootstrapping. To accommodate the present
study design, we imputed data within each occasion for
mice completing the occasion, using the closest prior occa-
sion as additional predictors.

Model specification.—Time-varying biomarker covari-
ates were included in Gompertz models by relating the a
parameter log-linearly with the covariate vector so that

|i(0 = exp(jt'fcp) • exp(6f).

The constant and time-dependent nonlinear regression coef-
ficients obtained from the BMDP3R procedure and subrou-
tine program correspond to ln(a) and 0, respectively. Expo-
nentiating the constant coefficient yields a, whereas 0 is
estimated directly.

All parameter estimates in the survival analysis were de-
rived using maximum likelihood, a general method of find-
ing estimators that maximize the probability, or likelihood,
of the observed sample data. The total sample likelihood, L,
is obtained as the product of individual probabilities for
each observation as defined by the probability density func-
tion and survivor function for the specific parametric distri-
bution used. Iterative procedures are then used to identify
parameter values maximizing the likelihood or its log.
Higher or less negative values of the log-likelihood corre-
spond to better fits. The log-likelihood and associated like-
lihood ratio statistic can be used to assess goodness of fit
and to compare nested models. For comparison of nested
models, twice the difference between log-likelihoods is dis-
tributed as a x2 statistic. For a more detailed discussion of
maximum likelihood estimation procedures applied to sur-
vival data, see Kalbfleisch and Prentice (50), Blossfeld et
al. (44), or Allison (35).

RESULTS

Table 2 presents mean survival and selected percentile
levels of age at death for censored and noncensored mice
by sex. For noncensored mice, variance for age at death
was much greater in males than females (F = 2.24, df =
137, 131, p < .0001). The mean survival times for male and
female noncensored mice were not significantly different
(f = .109,p = .91).

The survival curves for the male and female mice in
this study are shown in Figure 1. Some differences in the
two survival curves are apparent. Male mice experienced
greater mortality than female mice at younger ages but
appeared to have enhanced survival at advanced ages. The
two survival curves cross over at about 750 days of age,
close to the median age at death for both sexes. The two
curves were compared using the log-rank test and found to
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Table 2. Mean and Percentile Levels
of Survival Time (in Days) of HS Mice

Noncensored
iV
Mean
Standard deviation
Percentiles

10%
25%
50%
75%
90%

Maximum life span

Censored"
N
Mean
Standard deviation
Percentiles

10%
25%
50%
75%
90%

Maximum life span

Male

138
769.3
283.6

375
565
781
995

1138
1330

22
543.7
333.2

101
162
641
918
919
924

Female

132
772.5
189.6

552
651
770
892

1021
1278

27
368.3
279.0

75
160
184
647
660
918

Total

270
770.9
241.8

461
618
775
909

1083
1330

49
447.1
313.8

75
162
394
654
918
924

•Accidental, test-related, and reproductive-related deaths.

be significantly different (x2 = 4.64, 1 df, p = .031). The
log-rank test emphasizes factors in the tail of the survival
curve where equal weight is given to each failure time (51).

The significant difference in survival curves for males and
females suggests a violation of proportionality. In propor-
tional-hazards models, an important assumption is that indi-
viduals experience proportional hazards over time. Although
males or females may experience higher hazard rates as a
function of sex, resulting in a ratio of hazards for males and
females, this ratio should remain proportional (i.e., it should
not change over time). We tested the proportionality
assumption for males and females using Cox proportional
hazards regression by including an interaction term for sex
with time; its significance verified the nonproportionality
suggested by the survival curves: Stratified survival models
may be used with methods such as Cox proportional hazards
regression. Such methods, which allow the hazards across
strata to be nonproportional but constrain parameter esti-
mates of other covariates to be equal across the strata, may
not be appropriate in the context of aging if some biomark-
ers have different meanings in males and females. For our
parametric survival models, we tested models for males and
females separately, although sexes were pooled for some
analyses, with sex included as a covariate.

Figure 2 presents the hazard or mortality functions for
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Figure 1. Survival curves for noncensored male (dashed line) and female (solid line) mice, showing the percent surviving at time points measured
in days.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

edgerontology/article/53A/3/B217/540559 by guest on 27 July 2023



B222 HELLER ETAL.

0.009

0.008

0.007

0.006

H
A 0.005
z
A
R 0.004
D

0.003

0.002

0.001

0.000
200 300 400 500

GROUP

600 700 800 900 1000 1100 1200

AGE (DAYS)

- FEMALE " ~ MALE

Figure 2. Smoothed hazard (mortality) functions for male (dashed line) and female (solid line) mice, with time measured in days.

male and female mice following kernel smoothing (35).
The mortality crossover for males and females occurs at
around 525 days of age, approximately 225 days prior to
survival curve convergence, in keeping with mortality
kinetic studies (52). It is clear from Figure 2 that females,
although experiencing low early mortality, have more
sharply increasing mortality than males. Although the ker-
nel smoothing makes it difficult to interpret the hazard
shape at late ages, it suggests that, at least for females, mor-
tality acceleration declines very late in life, as many other
studies have found.

Table 3 presents log-likelihood statistics and model
parameters for exponential and Gompertz models with and
without biomarker covariates, for sexes separately and
together. Not surprisingly, Gompertz models fit signifi-
cantly better than exponential models: for all groups, Gom-
pertz models had less negative log-likelihood values and
likelihood ratio x2 tests (twice the difference in log-likeli-
hoods between Gompertz and exponential models) were
very highly significant. For Gompertz models without
biomarker covariates, the Gompertz initial mortality con-
stant a was estimated as .00014 for males and .00006 for
females. Initial estimates of 0, in Gompertz models without
covariates, were .00360 for males and .00520 for females.
The Gompertz parameters estimated without covariates
confirm that males may experience higher initial mortality

rates, but females experience greater age acceleration in
mortality.

The addition of the initial set of 12 biomarker covariates
found significant in univariate models resulted in a signifi-
cant decrease in the log-likelihood function, relative to
Gompertz models without biomarkers (likelihood-ratio x2 =
23.04, 12 df, p = .027 for males; x2 = 38.10, 12 df, p =
.0002 for females). Final Gompertz models with reduced
sets of biomarker covariates (following stepwise proce-
dures) did not produce significantly worse fits than the ini-
tial Gompertz biomarker models (x2 = 6.63, 8 df, p = .577
for males; x2 = 3.05, 6 df, p = .803 for females).

The parameter estimates and significance levels for each
biomarker tested singly in univariate Gompertz models are
presented in Table 4. Estimates for males and females sepa-
rately, as well as for sexes pooled using sex as a covariate,
are shown. For each biomarker, the sign of the parameter
coefficient indicates its direction on the hazard function,
not survival. For covariates with p-values less than .10,
hazard ratios are also presented that demonstrate the rela-
tive difference in hazards associated with an increment of
two standard deviations in biomarker level. For females,
univariate analyses identified 12 biomarkers as significant
predictors of survival time: File activity, File headpokes,
maximum cord drop time, body weight, baseline hemat-
ocrit, baseline urine concentration, linear and quadratic
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Table 3. Model Statistics for Survival Models

Model

Exponential, no covariates
(1 parameter)

Gompertz, no covariates
(2 parameters)

X2, relative to exponential

Gompertz, sex as covariate
(3 parameters)

X2, relative to exponential
X2, relative to Gompertz

without sex

Gompertz, initial multivariate
(14-15 parameters)

X2, relative to exponential
X2, relative to Gompertz

without covariates

Gompertz, final multivariate
(6-10 parameters)

X2, relative to exponential
X2, relative to Gompertz

with no covariates
X2, relative to Gompertz with

12 biomarker covariates

Male
(« = 581)

Log- Model
Likelihood Parameters

L =-1060.58 \ = .OO12

L =-981.83 a = .00014
0 = .00360

X2= 157.51, ldf ,p<.0001

— —

— —
— —

L =-970.31 a = .00501
9 = .00368

X2= 180.55, 13df,p<.0001
X2 = 23.04, 12df,p = .O27

L = -973.6 a =.00019
(6 parameters) 9 = .00368
X2= 173.92, 5 df,/?<.0001
X2=16.41,4df,/> = .003

X2 = 6.63, 8 df, p = .577

Female
(n = 569)

Log- Model
Likelihood Parameters

L =-1012.78 X = .0013

L = -893.20 a = .00006
0 = .00520

X2 = 239.16, ldf ,p<.0001

— —

— —
— —

L = -874.15 a = .00063
0 = .00531

X2 = 227.26, 13df,p<.0001
X2 = 38.10, 12df,p = .0002

L =-875.68 a = .00071
(8 parameters) 0 = .00531
X2 = 274.20, 7 df><.0001
X2 = 35.04, 6 df,p<.0001

X2 = 3.05,6df,p = .803

Total
(n = 1150)

Log- Model
Likelihood Parameters

L =-2073.37 \ = .0013

L =-1884.59 a = .00010
0 = .00417

X2 = 377.55, ldf ,p<.0001

L = -1881.14 a = .00008
0 = .00429

X2 = 384.46, 2 df,/?<.0001
X2 = 3.46, ld f ,p = .O62

L =-1860.85 a = .00299
(15 parameters) 0 = .00388
X2 = 384.46, 14df><.0001
X2 = 40.57, 12df><.0001

L =-1862.99 a = .00103
(10 parameters) 0 = .00388
X2 = 420.76, 9 df,p<.0001
X2 = 36.30, 7 df,p<.0001

X2 = 4.28,4df,/> = .369

Note: n = number of mouse-occasion subepisodes.

terms for lymphocytes, concanavalin A (Con A) response,
thromboxane levels, thromboxane:prostacycline ratio, and
glutathione peroxidase activity. Far fewer variables were
univariately significant for males: maximum cord drop
time, change in hematocrit after glucose challenge, and
natural killer cell activity. The results of the univariate
models pooling the sexes largely reflect the results of both
the univariate male and female models, with the addition of
linear and quadratic effects of white blood cell count as
significant predictors.

Somewhat different findings emerged when the initial
multivariate model, which included all biomarkers signifi-
cant in one or more univariate models, was tested. Results
are shown in Table 5. For females, File headpokes, maxi-
mum cord drop time, weight, baseline urine concentration,
and Con A response were significant. For males, maximum
cord drop time, change in hematocrit following glucose
challenge, natural killer cell activity, and Con A response
were significant predictors of survival. In the total sample,
weight, both hematocrit measures, baseline urine concen-
tration, natural killer cell activity, and Con A response were
associated with survival.

The results of final Gompertz multivariate models, fol-
lowing backward elimination of covariates, are shown in
Table 6. The final set of predictors for females included File
headpokes, maximum cord drop time, weight, baseline
hematocrit, baseline urine concentration, and Con A re-
sponse. For males, the final set of predictors included only
four measures: maximum cord drop time, hematocrit

change following glucose challenge, natural killer cell
activity, and Con A response. For the pooled sample, File
headpokes emerged as significant in the final model, along
with weight, both hematocrit measures, baseline urine con-
centration, natural killer cell activity, and Con A response.
As in the univariate case, the sex-combined model reflected
some of the significant elements in each of the sex-separate
models.

To evaluate the relationship between the biomarker
covariates and age in the study population, repeated mea-
sures analysis of variance (ANOVA) was carried out using
all available subepisode data from occasions two through
five, which had equal time intervals between their measure-
ment. Linear trends were tested using F tests. Individual
values for each biomarker were also subjected to linear
regression on age to obtain standardized regression coeffi-
cients to demonstrate the direction of linear change in
biomarkers. The results are shown in Table 7. For both
males and females, about two-thirds of the variables exam-
ined showed significant linear associations with age.

Generalized R2 statistics were computed for all models
from likelihood-ratio statistics (35,53) using the formula

R2=l-exp{-G2/n},

where G2 is the likelihood-ratio x2 statistic for the null
hypothesis that all covariates are equal to zero, and n is the
number of mice (35). Although the generalized R2 cannot
be strictly interpreted as a proportion of variance accounted
for, it has been shown in many cases to be similar in magni-

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

edgerontology/article/53A/3/B217/540559 by guest on 27 July 2023



B224 HELLER ETAL.

Table 4. Results of Univariate Gompertz Survival Analyses

Variable

Behavior
FACTIV
LFREARS
FHDPK
FBOLI
FDURN
MAXCDT

Homeostatic physiology
WT
LMAXTT
HEMAO
RHEMA40
GLUCO
RGLUC40
URINEO
RURINE24

Immune system
LYMPHS
LYMPHS2

WBC100
WBC1002

CONJ
DTAR
LNK25
LCONA

Oxidative defense
LTXB
LKETO
TKRAT
GSHPX

Sex and model parameters
FEMALE
CONST(lna)
TDEP(8)

Males

Parameter
Estimate'

-.00086
.00970

-.00123
.06708

-.17250
-.0080 1*

.00667

.07151
-.03203
-.08251*

.00065
-.00015
-.00002
-.00009

-.02108
.00014

-.01511
.00008
.00540
.00700
.22450*

-.06240

-.02222
.06520

-1.02370
.12015

-8.88680***
.00360***

Hazard
Ratio"

.75

.70

1.59

Females

Parameter
Estimate'

-.01464$
-.07122
-.05130*
-.03080

.19790

.01150**

.05374*
-.06480
-.05701**

.00411
-.00380
-.00104
-.00050**

.00006

-.06942$
.000631:

-.00566
.00004

-.00560
.00698
.01420

-.12510**

-.19570*
-.01080
1.38490*
1.99380*

-9.78076***
.00520***

Hazard
Ratio"

.72

.50

1.50

1.62

.64

.55

.17
7.84

.68

.64

1.42
1.20

Total

Parameter
Estimate"

-.00496
-.01838
-.02372$

.03690
-.11092
-.00005

.02727*

.03567
-.05390***
-.05716*
-.00053
-.00002
-.00019
-.00009

-.03802*
.00030*

-.01417*
.00007*
.00052
.00821
.14709*

-.08142**

-.09783
.02465

-1.08500*
1.32354

.32820**
-9.19462***

.00417***

Hazard
Ratio"

.72

1.38

.65

.79

.38
2.60

.45
2.00

1.33
.78

.77

1.39

•Significance levels: *p < .10; *p < .05; **p < .01; ***p < .001.
"For variables other than sex, the reported hazard ratios are those associated with two standard deviations of increment in the reported variable.

tude to R2 values from ordinary least squares (OLS) regres-
sion methods (35). The generalized R2 values for the Gom-
pertz initial multivariate models were estimated as .13 for
males and .21 for females. For the final multivariate mod-
els, the generalized R2 estimates were .10 for males and .20
for females. For the total sample, generalized R2 was esti-
mated as .12 and .10, respectively, for initial and final mul-
tivariate models. Similar methods for demonstrating the
percentage of variance accounted for are offered by Manton
et al. (14), who measured reductions in the Gompertz time-
dependent parameter 0 following the addition of time-vary-
ing covariates. In our models, values of 0 did not decrease
within sex, but values for the total-sample 0 changed from
.00429 to .00388, a reduction of approximately 10%.
Clearly, addition of the biomarker variables adds significant
information to the Gompertz models, but they only explain
a portion (10-20%) of age-related mortality.

DISCUSSION

Our results suggest a difference in the survival experi-
ence of male and female mice as reflected in the survival
curves. Mortality and survivor function crossovers have
been the topic of recent discussions (54,55). Although early
work on mortality crossovers between human sub-popula-
tions assumed that the crossovers were due to data error
[see Nam (54) for review], a considerable body of evidence
has accumulated relating crossovers to the effects of selec-
tive survival and unobserved heterogeneity (41,56). The
basic premise of selective effects as an explanation for mor-
tality crossovers is that if one population experiences a
harsher environment, it will experience greater early mor-
tality as frailer individuals die, resulting in a hardier popu-
lation of survivors. Liu and Witten (52) recently demon-
strated that, in the presence of a genetically predetermined
maximum life span, if one group is advantaged over an-

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

edgerontology/article/53A/3/B217/540559 by guest on 27 July 2023



MORTALITY AND B10MARKERS OF AGING B225

Table 5. Results of Initial Multivariate Gompertz Survival Analyses

Variable

Males Females

Parameter
Estimate'

Hazard
Ratio"

Parameter
Estimate"

Hazard
Ratio"

Total

Parameter
Estimate'

Hazard
Ratio"

Behavior
FACTIV
LFREARS
FHDPK
FBOLI
FDURN
MAXCDT

Homeostatic physiology
WT
LMAXTT
HEMAO
RHEMA40
GLUCO
RGLUC40
URINEO
RURINE24

Immune system
LYMPHS
LYMPHS2

WBC100
WBC1002

CONJ
DTAR
LNK25
LCONA

Oxidative defense
LTXB
LKETO
TKRAT
GSHPX

Sex and model parameters
FEMALE
CONST(lna)
TDEP(0)

.00521

-.00895*

.00992

-.02544
-.08680*

-.00013

.00013

.28845**

.08075*

-1.27509
-.97322

-5.29593**
.00368***

.73

.69

1.82
.78

-.04423*

-.00035*

-.05447
.00056

.01110
-.10346*

-.57530
1.34212

-7.37442***
.00531***

.55

.66

.73

-.02144

01567**

06210*

03506
02700

1.74

1.75

.00071

.03045*

-.03371*
-.06697*

1.43

.77

.75

- .00021*

-.02928
.00024

.16149*
-.11661**

-.89748
.12983

.48841***
-5.81347***

.00388***

.78

1.37
.70

1.63

"Significance levels: %p < .10
"For variables other than sex,

; *p < .05; **p < .01; ***p < .001.
the reported hazard ratios are those associated with two standard deviations of increment in the reported variable.

other group and experiences lower mortality early in life,
then the advantaged population must experience mortality
rate acceleration later in order for the two groups' survival
curves to converge at the maximum life span.

Although other studies have reported sex differences in
mortality in inbred strains of mice, very few studies have
demonstrated mortality curve crossovers between sexes of
any species (41,57). The present study's findings differ
somewhat from previous studies in that the mortality and
survival function crossovers occur relatively early in life (at
around the median age) rather than at very advanced ages
(52), and that the longest lived individuals were male rather
than female. Using medflies, Carey and Liedo (57) pre-
sented the first solid evidence for sex crossovers in nonhu-
man species, but found that even with very large samples, it
was difficult to classify one sex as longer lived due to in-
consistent sex differences in several measures of longevity.

Their study emphasized the need for large numbers in any
study of sex differences in mortality kinetics. The present
study's findings should be interpreted with caution due to
the limited sample size for the study of mortality kinetics.

With regard to the prediction of mortality by the candi-
date biomarkers, significant predictors of survival were
found from each of the domains represented in this study.
From the battery of behavioral measures, greater levels of
File activity and headpokes, which may measure curiosity
and willingness to explore novel environments, were asso-
ciated with decreased hazards of death for females. Female
mice who had longer cord drop times also experienced
lower hazards of death, although males, in univariate analy-
ses, showed the opposite effect. Low cord drop times may
be indicative of lesser strength, but, because many mice
jump off the cord quickly, may also measure either greater
excitability or willingness to act in novel situations.
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Table 6. Results of Final Multivariate Gompertz Survival Analyses

Variable

Behavior
FACTIV
LFREAR
FHDPK
FBOLI
FDURN
MAXCDT

Homeostatic physiology
WT
LMAXTT
HEMAO
RHEMA40
GLUCO
RGLUC40
URINEO
RURINE24

Immune system
LYMPHS
LYMPHS2

WBC100
WBC1002

CONJ
DTAR
LNK25
LCONA

Oxidative defense
LTXB
LKETO
TKRAT
GSHPX

Sex and model parameters
FEMALE
CONST(lna)
TDEP(8)

Males

Parameter
Estimate"

-.00762*

-.071561:

.26233**
-.07892$

-8.59508***
.00386***

Hazard
Ratio"

.76

.74

1.72
.79

Females

Parameter
Estimate*

-.04661*

.00918*

.05310*

-.04123*

-.00042*

-.12678*

-7.24657***
00469***

Hazard
Ratio"

.53

1.38

1.61

.73

.61

.78

Total

Parameter
Estimate'

-.02618*

.02936*

-.04243**
-.06653*

-.000221:

.15469*
-.12391***

.50103***
-6.87502***

.00379***

Hazard
Ratio"

.70

1.41

.71

.76

.77

1.35
.69

1.65

'Significance levels: tp < .10; *p < .05; **p < .01; ***p < .001.
"For variables other than sex, the reported hazard ratios are those associated with two standard deviations of increment in the reported variable.

From the domain of homeostatic physiology, baseline
hematocrit was the most consistent predictor of mortality;
higher hematocrit was significantly associated with reduced
hazard in the total sample and for females. In this sample,
baseline hematocrit declined linearly and dramatically with
age. Age-related declines in hematocrit levels have been
found in many prior studies, including studies of rats
(58,59), mice (60,61), and monkeys (62). Similarly, base-
line urine concentration also showed age-related declines,
and higher values were associated with decreased mortality
for females. For males, greater change (residual) in hemat-
ocrit scores following glucose challenge was also associ-
ated with decreased mortality. Fasting glucose and glucose
tolerance, however, did not emerge as significant predictors
in any survival model, and only baseline glucose showed
strong age associations, and only for males. The lack of
association of the glucose measures with mortality is diffi-

cult to reconcile with well-accepted theories regarding the
role of nonenzymatic glycosylation in many aging pro-
cesses (63,64). Studies in rats (65) have suggested that the
longevity-extending effects of dietary restriction may in
part be mediated through lower glucose levels, although
Sell et al. (66) found only weak correlations between
glycemia and species longevity and Leiter et al. (67) found
no impairment of glucose tolerance in aged C57BL/6J
mice. Another biomarker measure that is probably related
to glycosylation processes is tail tendon fiber break time, a
measure of collagen cross-linking. Collagen crosslinking
has been associated with mechanistic theories of aging
(68), but its effects probably occur largely through glycosy-
lation processes (66,69). In the present study, tail tendon
fiber break time showed the strongest association of any
biomarker with age (standardized (3 = +.92 for males and
+.90 for females), but did not emerge as a significant pre-
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Table 7. Associations of Biomarkers with Age: Summary of Repeated Measures ANOVA and Regression Results

Variable

Behavior
FACTIV
LFREARS
FHDPK
FBOLI
FDURN
MAXCDT

Homeostatic physiology
WT
LMAXTT
HEMAO
RHEMA40
GLUCO
RGLUC40
URINEO
RURIN24

Immune system
LYMPHS
WBC100
CONJ
DTAR
LNK25
LCONA

Oxidative defense
LTXB
LKETO
TKRAT
GSHPX

Repeated
Measures
ANOVA
F (linear)

7.13
16.84
29.38
13.72
6.96
1.56

416.32
1036.53
253.70

.42
5.70

.11

.73
5.29

68.77
7.97

74.55
46.15

.89

.77

53.63
20.13

2.74
104.53

Males

P(F)
(df, 1,

df2152)

.0081

.0001

.0001

.0003

.0088

.2132

.0001

.0001

.0001

.5164

.0176

.7386

.3943

.0222

.0001

.0051

.0001

.0001

.3467

.3825

.0001

.0001

.0990

.0001

Standardized
Regression
Coefficient

+.9267
+.7038
-.9603
-.6685
-.0197
+.2875

+.3099
+.9997
-.9894
+.7530
-.9684
-.7080
-.6353
+.9673

-.9833
+.5581
-.9644
-.9738
-.5824
-.1180

-.6884
-.7686
-.4392
+.9384

Repeated
Measures
ANOVA
F (linear)

10.16
22.00
24.60

.26

.52

.21

674.34
1017.52
404.56

.64

.52

.30
6.07
6.81

101.92
23.03
59.07
46.05

.01

.00

33.36
25.88

.33
105.86

Females

P(F)
(df, 1,

df2152)

.0013

.0001

.0001

.6110

.4725

.6465

.0001

.0001

.0001

.4247

.4733

.5831

.0144

.0096

.0001

.0001

.0001

.0001

.9191

.9615

.0001

.0001

.5636

.0001

Standardized
Regression
Coefficient

+.9832
+.5186
-.9092
+.5158
+.5821
-.8119

+.7520
+.9985
-.9925
-.8975
-.6534
+.7301
-.7632
-.9430

-.9713
-.3016
-.9893
-.5147
-.7891
+.4054

-.6404
-.7765
+.7934
+.9492

dictor for either sex in the survival analyses. Because tail
tendon fiber break time is so strongly associated with age,
however, it is confounded in the survival analyses with the
time-dependent Gompertz parameter 6. This is a problem
shared by any biomarker strongly associated with chrono-
logical age, but is experienced to the greatest extent with
this measure.

Another key area believed to be associated with aging
mechanisms involved with free radical generation (70) is
that of oxibative defenses, represented in the present study
by glutathione peroxidase (GSHPX). In the HS study popu-
lation, GSHPX showed apparent age-related increases, and
higher values were marginally associated with increased
hazard rates in females. In the present study, two arachi-
donic acid metabolites—thromboxane B2 and the prostacy-
cline metabolite 6-keto-PGFl-a—were considered part of
the oxidative defense domain due to the roles of eicosanoids
as mediators in inflammation and in oxidative stress (71).
These biomarkers were only measured from 45 to 630 days,
and their levels decreased with age over that time period.
Higher thromboxane levels were associated with enhanced
survival in females. Eicosanoids have been shown to have
complex interactions with other systems, such as T cell-
mediated immunity (72).

The biomarkers chosen for the present study to evaluate
immune function reflect diverse functional parameters. Of
the immune measures, Con A, a measure of lymphocyte
mitogen responsiveness, was the most consistent predictor
of mortality and was associated with reduced hazard rates
in most models. Blastogenic responses to mitogens have
been shown in many studies to decline as a function of age;
the significant reduction in hazard rates observed here may
reflect individual differences in immunocompetence as a
function of age (73,74). Many studies have also found age-
related declines in natural killer cell activity (75,76), and it
emerged as a significant independent predictor for survival
in males and in the total sample. Conjugated tumor target
cells and dead target cells, although age-related in the study
mice, were not significant predictors of mortality.

In addition to examining the relationships of each bio-
marker to age and mortality in this sample, we explored the
overall effect of the addition of biomarker covariates on
Gompertz parameters (14), and also examined the ability of
the biomarkers to explain mortality in the sample by using
generalized R2 methods (35). The results suggest mat the
addition of time-varying biomarker variables to Gompertz
survival models adds significant information, but explains
only a relatively small proportion of the variance in age at
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death in this sample. Manton and colleagues (14,41) were
able to explain a much greater proportion of variability in
two longitudinal aging studies, Framingham and the Na-
tional Long Term Care Survey, but attributed the greatest
increases to the addition of functional status measures
rather than physiological risk factors alone.

Although most of the biomarkers assessed in the present
study showed clear changes with age, far fewer predicted
mortality reliably. In interpreting these findings, several
considerations should be addressed. First, to achieve signif-
icance in the present analysis, it is not sufficient for a
biomarker to change with age if it does not also distinguish
survivors from nonsurvivors of the same chronological age.
Thus, the set of significant biomarkers should reflect bio-
logical functioning that is independent of chronological
age, but will not necessarily include all biomarkers showing
age-associated change. For example, as discussed previ-
ously, tail tendon fiber break time, though strongly related
to age, does not do better than chronological age in predict-
ing the hazard of death in this sample.

It should also be kept in mind that the procedures used in
the present study emphasize the identification of variables
that contribute, independently of other measures, to the pre-
diction of survival. It is unlikely, however, that many
biomarkers function independently; some biomarkers may
be directly affected by other biomarkers, and others may
covary together due to age-related changes in underlying
physiological systems. Indeed, there is growing consensus
that a comprehensive view of aging includes the concept of
a complex nexus of interrelated variables constituting a sys-
tem (6). Alternative systems-based approaches that may
prove useful in survival analysis with biomarkers include
the identification of underlying factors or principal compo-
nents (62) and the inclusion of specific interaction terms
between biomarkers (14). Such approaches, however, pro-
vide challenges in longitudinal studies if attrition over mul-
tiple occasions severely curtails the available sample size.
For example, although the present study sample is large (n
= 319) in comparison to some animal studies, sample size
reduction at later ages nevertheless limits the scope of mul-
tivariate analyses that can be used to address specific fac-
tors differentiating late deaths.

A final consideration that should be kept in mind in eval-
uating the roles of biomarkers in predicting survival is that
the present analysis does not explicitly model intraindivid-
ual changes in biomarkers. Biomarker values were replaced
with updated levels following each occasion of measure-
ment. Mice were therefore assessed on the basis of short- to
moderately long-term (<270 days, the maximum interval
between occasions) prediction. It is possible that modeling
individual differences in trajectories of biomarker change
may provide more meaningful information regarding rela-
tionships between biomarkers and survival. In addition to
long-term age trajectories, short-term intraindividual vari-
ability in biomarker values may also provide additional
information. For example, a recent study of retirement
community residents by Nesselroade and colleagues found
that intraindividual variability in biomarkers measured re-
peatedly explained a substantial proportion of mortality over
a 5-year period, whereas actual biomarker levels explained

relatively little (77). The present analysis also assumes that
a given biomarker value confers the same advantage or dis-
advantage regardless of the age of measurement. It may be
more reasonable to assume that the significance and mean-
ing of specific biomarkers may change depending on age, but
allowing covariate parameter coefficients to vary over differ-
ent portions of the life span requires large samples because
statistical power is decreased with the introduction of many
additional parameters.

In conclusion, this study confirmed hypothesized associ-
ations with age for a number of candidate biomarkers, but
questions remain about the relationships between biomark-
ers of aging and longevity. Although several biomarkers
emerged as significant independent predictors of mortality
in our analyses, it is clear that much more remains to be
learned about the complex interrelationships among bio-
markers and their effects on aging systems over time.
Future multivariate efforts addressing these complex issues
have the potential to contribute greatly to our understanding
of how biomarkers of aging explain mortality risk across
the life span.
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