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OPINION

Do the fastest concepti have a shorter life span?

Juan J.Tarı́n by the fact that changes early in life have a greater effect on
fitness than changes later in life. A convergent and complement-
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the soma (Kirkwood and Rose, 1991). Although, at present, aSpain
role for a ‘mutation-accumulation’ mechanism cannot be ruled

An evolutionary hypothesis based on an ‘antagonist pleio- out (Partridge and Barton, 1993), the fact that longer-lived
tropy’ or ‘disposable soma’ mechanism is put forward to species appear to be in general less fecund, require more time
explain differences in longevity between species, strains, to reach maturity, and have longer gestation periods, lower
and sexes. Data from several congenic mouse strains and infant mortality rates, smaller litters, and a longer period for
mammalian species suggest that there may be an association the raising of young than shorter-lived species (Smith, 1995),
between cleavage rate of concepti and longevity, in such a strongly supports the intervention of an ‘antagonist pleiotropy’
way that concepti from species, strains or the sex (male) or ‘disposable soma’ mechanism on the evolution of longevity.
with the fastest cleavage rates have shorter life spans. The major histocompatibility complex (MHC, called H-2 in
The major histocompatibility complex (MHC) and, in mice and HLA in humans) is one of only a few gene systems
particular, the conceptus development gene (Ped) together which are known to affect mammalian maximum life span
with several Y-linked genes that are expressed during and reproductive fitness [see Walford (1990); Crew (1993) and
the preimplantation stages of development may play an Yunis and Salazar (1993) for reviews]. Table I shows longevity
important role in determining or modulating longevity in and fecundity data from two classical studies by Smith and
mammals. Notwithstanding, effects of other loci as well Walford (1977) and Lerneret al. (1988). Smith and Walford
as environmental factors on conceptus development and (1977), using congenic mice (inbred strains that theoretically
longevity cannot be ignored. differ from each other only at the H-2 complex) with three
Key words: conceptus development/gender gap/longevity/different strain backgrounds, demonstrated background-
major histocompatibility complex/maximum life span dependent differences in longevity when the H-2 haplotype

was the same (a haplotype is a collection of all the MHC
genes on a single chromosome, in the case of the mouse on
chromosome 17), and also gender and H-2 haplotype-dependent

Introduction differences when analysing the same background genome [data
Maximum life span is a characteristic of each species, influ-shown in Table I are only from congenic mice with the C57Bl/
enced by genetic and environmental factors and subject to10 (B10) background]. Lerneret al. (1988) showed that
evolution (Hart and Turturro, 1987; Hayflick, 1987). The reproductive senescence of female mice was correlated with
evolution of longevity has taken place despite the fact that thethe tenth decile of survivorship (mean life span of the last
strength of natural selection declines with age after sexual10% of the survivors), e.g. females from the strain C57BL/
maturity and rearing of progeny (Hayflick, 1987). This paradox10SnJ, which had the shortest life span, exhibited an earlier
can be explained by the ‘mutation-accumulation’ (Medawar,outset of age-associated infertility, a lower number of litters/
1957) and the ‘antagonist pleiotropy’ (Williams, 1957) theoriesfemale and of total number of pups/female than females from
which were put forward originally to explain the evolution of the longest-lived strains B10.BR/SgSnJ and B10.RIII/SgDv.
senescence. The ‘mutation-accumulation’ theory states thatThe original point in the analysis of these data that is
deleterious mutations, accumulated by mutation pressure, withemphasized here, however, is the fact that the cleavage rate
effects only at older ages are maintained in populations becausein vivo of concepti from the longest-lived strains B10.BR/
natural selection is extremely weak at post-reproductive ages.SgSnJ and B10.RIII/SgDv is typically slower than that of
The ‘antagonist pleiotropy’ theory, on the other hand, saysconcepti from the other B10 congenic strains. These results
that alleles with early beneficial effects on survivorship orsupport the hypothesis first formulated by Mittwoch (1993) of
fecundity are selectively favoured despite the fact that theyan association between developmental rate of concepti/

embryos/fetuses and longevity.may have deleterious effects at older ages. This idea is justified
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Table I. Relationship among conceptus development (Ped) gene phenotype, mean life span of the last 10% of survivors, and reproductive ageing in several
B10 congenic mouse strains

Strain H-2 Qa-2 Pedgene No. of cells/ Tenth decile of Age at last No. of Total no. of No. of
haplotypea proteina phenotypea conceptus at 89 h survivorship (weeks)b litter (days)c litters/femalec pups/femalec pups/litterc

post-HCGa

Females Males

C57BL/10SnJ b Yes Fast 33.16 2.1d 148 6 1.2 1556 0.4 2606 17 5.46 0.5 346 3 6.4 6 0.3
B10.PL/J u Yes Fast 30.46 1.7 1456 1.7 1536 1.7
B10.A/SgSnJ a Yes Fast 32.06 1.1 1646 2.9 1546 0.4
B10.D2n/nSnJ d Yes Fast 39.16 1.5 1546 0.8 1556 0.5
B10.BR/SgSnJ k No Slow 22.86 1.3 1616 2.1e 149 6 1.1g 311 6 15h 7.5 6 0.5h 43 6 3h 5.8 6 0.3
B10.RIII/SgDv r No Slow 25.46 0.9 1656 1.0f 170 6 0.8f 317 6 16h 7.8 6 0.5h 50 6 3h 6.7 6 0.3

a,b,cData fromaWarneret al. (1988);bSmith and Walford (1977) andcLerneret al. (1988).
dValues are means6 SE.
eValue significantly different from all the congenic strains except B10.A/SgSnJ strain (P ø 0.05).
fValue significantly different from all the other congenic strains (P ø 0.05).
gValue significantly different from all the other congenic strains except B10.PL/J (P ø 0.05).
hValue significantly different from C57BL/10SnJ strain (P ø 0.05).
HCG 5 human chorionic gonadotrophin.

The existence of a relationship between the speed of 1982). Although several hypotheses have been formulated,
none of them appears to give a definitive and clear answer toconceptus development and longevity is further supported by
the question of why there is a ‘gender gap’ in favour ofdata from different mammalian species. Table II shows a
females. It has been suggested, for instance, that the greatersignificant (P ø 0.013) positive correlation between cleavage
longevity of women when compared to men may be due torate of the first conceptus-regulated cell division and maximum
the fact that men live more risky lives than women. It appearslife span of five mammalian species, including human beings.
that men are more likely to be involved in alcohol and drugExtrapolating from data obtained inRana pipiens(Sze, 1953),
addiction than women. Furthermore, it seems that women takethe cleavage rate at which concepti develop before gastrulation
more specific preventive measures and use health services foris extraordinarily rapid (at a rate not seen elsewhere, even in
established diseases more regularly than men (Silman, 1987).tumour cells) and likely to be constant within species, strains,
It has also been suggested that the longer life span of womenand sexes. Therefore, this parameter can be used to perform
is due to gender differences in atherogenesis, which in turncomparative analyses. Special care was taken, however, to
would be caused, at least in part, by gender-specific differenceschoose the first conceptus-regulated division in each species
in sex steroids (Hospital Practice, 1988). Notwithstandingsince cleavage rates before activation of conceptus genome
these ideas, it appears that the ‘gender gap’ would not bemay be controlled by maternally inherited products (Goddard
eliminated even after the hypothetical elimination of majorand Pratt, 1983). In addition, no further divisions, e.g. until
causes of death in the USA, including all cardiovascularthe blastocyst stage, were taken into account for calculating
diseases, ischaemic heart disease, diabetes, and cancercleavage rates of concepti because of possible differences
(Olshanskyet al., 1990).between species in levels of programmed cell death within the

Another hypothesis put forward to explain the ‘gender gap’pluriblast and/or trophoblast lineages (Hardyet al., 1989).
in humans is based on the endowment of a second functioningEvidence of a correlation between the rate of cell division
female X chromosome before the random inactivation of oneof concepti and reproductive fitness, as predicted if we assume
X chromosome at the blastocyst stage and/or after reactivationthe existence of an ‘antagonist pleiotropy’ relationship between
of X-linked genes by ageing. This would allow female concepticleavage rate of concepti and longevity, is also revealed by
and/or ageing women to have twice as much activity for anstudies using two congenic mouse strains, B6.K1 and B6.K2,
X-linked enzyme as male concepti and/or ageing men whodiffering only at the Q region of the mouse MHC (Warner
have only one X chromosome. It has been suggested, foret al., 1991, 1993). Table III shows that mice from the B6.K1
instance, that the presence on the X chromosome of the genestrain, which have a slower cleavage rate of concepti, exhibit
coding for one of the enzymes that binds ubiquitin to cyclina longer duration of gestation and a smaller litter size than
could bestow a replicative advantage for females if this genemice from the faster-cleaving strain B6.K2. Birthweight of
were reactivated by ageing (the transition from metaphase toB6.K1 pups is also lower than pups from the B6.K2 strain.
anaphase is induced by cyclin degradation by the ubiquitin-
dependent proteolytic system) (Magnani and Accorsi, 1993).

The ‘gender gap’ in longevity However, this hypothesis is weakened by the fact that differ-
Although there are exceptions to the rule (Smith, 1989), it canences in cleavage rates between human female and male
be said that the ‘gender gap’, or bias in the expectation of lifeconcepti occur as early as fertilization, or during the first or
between males and females in favour of females, is a generalsecond cleavage division. From this point of development until
phenomenon observed in the animal kingdom. In humans, forthe blastocyst stage, differences between sexes are maintained

but not increased (Rayet al., 1995). In other words, theinstance, females live ~6 years longer than males (WHO,
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Table II. Relationship between cleavage rate of the first conceptus-genome-regulated cell division and
maximum life span (MLS) in several mammalian species

Human Pig Rat Hamster Mouse

Embryo stage at which RNA 4 cells 4–8 cells 2 cells 2 cells 1–2 cells
synthesis from conceptus genome is
initiateda

Conceptus stage at which major 4–8 cells 4–8 cells 2–4 cells 1–4 cells 2–4 cells
changes in qualitative pattern of
protein synthesis occura

Cleavage rate of the first conceptus- ~24 hb ~18 hc ~13 hd ~10 he ~10 hf

genome-regulated cell division (8–16 cells) (8–16 cells) (4–8 cells) (4–8 cells) (4–8 cells)
MLS (years)g 120 27 4.7 4.0 3.5

Pearson correlation coefficient (r) between cleavage rate of the first conceptus-genome-regulated cell division
and MLS5 0.9233 (one-tailed test,P ø 0.013).
a,b,c,d,e,f,gData fromaSchultz and Heyner (1992);bHardy et al. (1989);cHunter (1973);dDalcq (1957);
eBavisteret al. (1983); fHarlow and Quinn (1982) andgRocksteinet al. (1977) and Allard (1993).

Table III. Relationship between conceptus development (Ped) gene phenotype and reproductive performance
in two congenic mouse strains that differ at only the Q subregion of the major histocompatibility complex
(H-2)

Strain H-2 Qa-2 Pedgene No. of cells/conceptus Duration of No. of
haplotypea proteina phenotypea at 89 h post-HCGa gestation (h)b pups/litterb

B6.K2 b Yes Fast 31.06 1.4c 476 6 2.4 8.16 1.3
B6.K1 b No Slow 20.46 1.1 4906 3.9d 5.4 6 0.3e

a,bData fromaWarneret al. (1988) andbWarneret al. (1993).
cValues are means6 SE.
d,eValue significantly different from B6.K2 strain (dP ø 0.01; eP ø 0.001).
HCG 5 human chorionic gonadotrophin.

cleavage rate of female concepti does not appear to increase that, in the mouse, G6PDH (De Schepperet al., 1993) and
HPRT (Harper and Monk, 1983) activities are maternallybetween the genomic activation of concepti at the 4–8-cell

stage and the blastocyst stage, a period during which female controlled (oocyte-encoded) during the early stages of preim-
plantation development, postponing to later stages [the morulaconcepti have two functioning X chromosomes.

It has also been proposed that the presence on the X stage in the case of HPRT (Monk and Handyside, 1988)] the
appearance of quantitative differences in enzyme activitieschromosome of the gene coding for glucose 6-phosphate

dehydrogenase (G6PDH) may confer on females a better between sexes. This effect is further reinforced by the decreased
expression of the paternal HPRT allele when compared toprotection against oxidative stress during both the development

of concepti, which as mentioned above is characterized by an its maternal counterpart (Moore and Whittingham, 1992).
Furthermore, age-related reactivation is not a feature of all X-unusually high mitotic rate, and senescence, after reactivation

of X-linked genes by ageing (Magnani and Accorsi, 1993). linked loci. In fact, ageing does not affect the frequency of
reactivation of the X-linked HPRT locus in human skinThe presence on the X chromosome of the gene coding

for hypoxanthine phosphoribosyl transferase (HPRT) may fibroblast clones (Migeonet al., 1988).
Clarke and Mittwoch (1994, 1995) have suggested a negativecontribute further to protect women against oxidative damage.

The rationale of this hypothesis is based on the fact that relationship between basal metabolic rate and longevity to
explain the greater longevity of women when compared toG6PDH is a key enzyme in the production of NADPH which,

in turn, keeps cellular glutathione in its reduced form (GSH). men. We should bear in mind, however, that although basal
metabolic rates may play an important role in determining orGSH is a free radical reaction inhibitor and a substrate for

glutathione peroxidase, keeping the cellular concentration of modulating longevity, the relationship between longevity and
basal metabolic rate is uncertain, at least among species (AustadH2O2 and organic hydroperoxides low. HPRT, on the other

hand, is an enzyme involved in the salvage of purine nucleo- and Fischer, 1991). Therefore, other cellular, physiological and/
or environmental factors must also be taken into account totides. It catalyses the conversion of hypoxanthine to inosine

monophosphate (IMP). This reaction decreases the intracellular explain the ‘gender gap’ in longevity.
The weakness of the aforementioned hormonal–enzymatic–concentration of hypoxanthine which is catabolized by xanthine

oxidase, the enzyme that produces superoxide radicals during metabolic hypotheses is overcome, at least to a certain degree,
by adopting an evolutionary point of view. Rossleret al.the conversion of hypoxanthine to xanthine and of xanthine

to uric acid. This hypothesis is flawed, however, by the fact (1995) utilized a mathematical model that, in humans and
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sperm whales, showed that the shorter life expectancy of males male concepti (Burgoyneet al., 1995). Furthermore, ovine male
concepti develop faster than female concepti during preim-can be explained by the higher fecundity of males. This would

be attributed to the long gestation period and even longer plantation development despite the fact that ovine concepti do
not express theSrygene (Bernardiet al., 1996).period of suckling-induced amenorrhoea in females, and to

the promiscuity of males (in the case of the human, this would In conclusion, a great deal of effort should be dedicated in the
future to uncover the genetic and environmental factors thatbe applicable under archaic conditions). However, returning

to the ‘antagonist pleiotropy’ and ‘disposable soma’ theories, play an important role in determining or modulating conceptus
growth rates and life span of species, strains and sexes. Here, Iit is possible to link the shorter longevity of males with their

higher reproductive fitness and this, in turn, with their higher have provided insights to the potential participation of just a few
genetic loci and allelic interactions. Progress in this area willdevelopmental rates. It is well known that, in general, mamma-

lian male concepti/embryos/fetuses, and in particular human allow us to ascertain whether the hypothesis of an association
between rates of cell division during preimplantation stages andmale concepti/embryos/fetuses, cleave and/or develop faster,

have shorter gestation periods, and are heavier at birth than longevity is true and, if so, which loci and allelic interactions
have a real effect on the beginning and end of life.female concepti/embryos/fetuses (Mittwoch, 1993; James,

1994; Tarı´n et al., 1995).
Although the adoption of an evolutionary point of view may
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