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Abstract
The mechanistic target of rapamycin (mTOR) is an evolutionarily conserved protein ki‐
nase that regulates growth and metabolism. mTOR is found in two protein complexes, 
mTORC1 and mTORC2, that have distinct components and substrates and are both 
inhibited by rapamycin, a macrolide drug that robustly extends lifespan in multiple 
species including worms and mice. Although the beneficial effect of rapamycin on 
longevity is generally attributed to reduced mTORC1 signaling, disruption of mTORC2 
signaling can also influence the longevity of worms, either positively or negatively 
depending on the temperature and food source. Here, we show that loss of hypotha‐
lamic mTORC2 signaling in mice decreases activity level, increases the set point for 
adiposity, and renders the animals susceptible to diet‐induced obesity. Hypothalamic 
mTORC2 signaling normally increases with age, and mice lacking this pathway dis‐
play higher fat mass and impaired glucose homeostasis throughout life, become more 
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1  | INTRODUC TION

The mechanistic target of rapamycin (mTOR) is a serine/threonine 
kinase that plays critical roles in the regulation of growth, metab‐
olism, and aging. The mTOR protein kinase is found in two distinct 
protein complexes; mTOR complex 1 (mTORC1) integrates numerous 
environmental and hormonal cues, including the availability of amino 
acids (Wolfson & Sabatini, 2017), to regulate key anabolic processes 
including ribosomal biogenesis, protein translation, and autophagy, 
while mTOR complex 2 (mTORC2) plays a role in cytoskeletal orga‐
nization and is a key effector of insulin/PI3K signaling (Kennedy & 
Lamming, 2016; Zhou & Huang, 2011). The pharmaceutical rapamy‐
cin, which acutely and robustly inhibits mTORC1, extends the lifes‐
pan in organisms including yeast, worms, flies, and mice, even when 
begun late in life or when treatment is intermittent (Apelo, Pumper, 
Baar, Cummings, & Lamming, 2016; Arriola Apelo & Lamming, 2016; 
Bitto et al., 2016; Bjedov et al., 2010; Dumas & Lamming, 2019; 

Hansen et al., 2007; Harrison et al., 2009; Kapahi et al., 2004; Miller 
et al., 2011; Powers, Kaeberlein, Caldwell, Kennedy, & Fields, 2006; 
Robida‐Stubbs et al., 2012; Selman et al., 2009).

While it has long been presumed that inhibition of mTORC1 by 
rapamycin mediates its beneficial effects on longevity, we and oth‐
ers have found that prolonged treatment with rapamycin also in‐
hibits mTORC2, both in cell culture and in vivo in mice (Lamming et 
al., 2012; Sarbassov et al., 2004; Schreiber et al., 2015). However, 
inhibition of mTORC2 by rapamycin is limited to specific cell lines 
and tissues, most likely determined by the relative expression of 
FK506‐binding proteins (FKBPs), FKBP12 and FKBP51 (Schreiber 
et al., 2015). In the nematode Caenorhabditis elegans, mTORC2 reg‐
ulates metabolic processes via several distinct signaling pathways 
and can have positive or negative effects on lifespan depending on 
the tissue that is targeted, the temperature, and the food source 
(Mizunuma, Neumann‐Haefelin, Moroz, Li, & Blackwell, 2014; 
Robida‐Stubbs et al., 2012; Soukas, Kane, Carr, Melo, & Ruvkun, 
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frail with age, and have decreased overall survival. We conclude that hypothalamic 
mTORC2 is essential for the normal metabolic health, fitness, and lifespan of mice. 
Our results have implications for the use of mTORC2‐inhibiting pharmaceuticals in 
the treatment of brain cancer and diseases of aging.
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2009). In mice, disruption of mTORC2 signaling via deletion of Rictor, 
which encodes an essential protein component, in the liver, adipose 
tissue, or skeletal muscle leads to insulin resistance (Bentzinger 
et al., 2008; Kumar et al., 2008, 2010; Lamming, Demirkan, et al., 
2014; Lamming, Mihaylova, et al., 2014; Polak et al., 2008; Tang et 
al., 2016). We also recently showed that deletion of hepatic Rictor, 
or postdevelopmental depletion of RICTOR in the whole body of 
mice, significantly reduced male lifespan (Lamming, Mihaylova, et 
al., 2014).

Over the last decade, significant progress has been made in un‐
derstanding the roles of both mTOR complexes in the regulation of 
key metabolic tissues (Kennedy & Lamming, 2016). Less well un‐
derstood is the role of mTOR complex signaling in the brain. mTOR 
Complex 1 is clearly an important regulator of neuronal behavior; 
hypothalamic mTORC1 is a key sensor of nutrient sufficiency and 
acute activation of hypothalamic mTORC1 suppresses food intake, 
while chronic activation selectively in POMC neurons can drive 
overnutrition and obesity (Cota et al., 2006; Mori et al., 2009; Yang 
et al., 2012). Genetic reduction of S6K1, a key downstream effector 
of mTORC1, or prophylactic treatment with rapamycin, which can 
cross the blood‐brain barrier (Cloughesy et al., 2008; Gottschalk 
et al., 2011) delays or prevents the progression of Alzheimer's dis‐
ease in mouse models (Caccamo et al., 2015; Majumder et al., 2012; 
Spilman et al., 2010) and also blocks age‐associated cognitive decline 
in wild‐type mice (Halloran et al., 2012). In contrast, the role of brain 
mTORC2 signaling in the regulation of metabolism, health, and lon‐
gevity has been less studied. This knowledge gap has recently begun 
to narrow, with recent work showing that deletion of Rictor in male 
mice using the neuron‐specific Nestin‐Cre recombinase decreases 
energy expenditure and increases adiposity without affecting food 
intake, lowers body temperature, and disrupts glucose homeostasis 
(Kocalis et al., 2014). Body weight was also affected in male mice 
by selective loss of Rictor in POMC neurons, but in this case, the 
primary effect was on food intake rather than energy expenditure 
(Kocalis et al., 2014). Thus, mTORC2 signaling in the brain plays im‐
portant roles in whole body metabolism, but the specific neuronal 
populations mediating these effects and the long‐term implications 
for health and longevity remain to be elucidated.

In order to further our understanding of where and when neu‐
ronal mTORC2 might be important, we examined the phosphor‐
ylation of its substrate AKT S473 in the brains of both male and 
female mice across their lifespans. We determined that neuronal 
mTORC2 signaling increases with age in distinct brain regions in‐
cluding the hypothalamus. In order to elucidate the roles of hy‐
pothalamic mTORC2 in the metabolic health and aging of mice, 
we created a model (RictorNkx2.1−/−) in which Rictor is deleted in a 
wide range of hypothalamic neurons using Nkx2.1‐Cre. We find 
that RictorNkx2.1−/− mice of both sexes exhibit lifelong increases in 
adiposity starting at an early age and have reduced spontaneous 
locomotor activity. RictorNkx2.1−/− mice have decreased glucose tol‐
erance, develop insulin resistance as they age, display increased 
frailty, and ultimately have a reduced lifespan. Finally, we find that 
RictorNkx2.1−/− mice have increased susceptibility to diet‐induced 

obesity. Our results demonstrate a key role for hypothalamic 
mTORC2 in the regulation of metabolism, fitness, and longevity, 
and suggest that inhibition of this complex by pharmaceuticals 
must be approached with caution.

2  | RESULTS

2.1 | mTORC2 signaling increases with age in 
hypothalamic neurons

We studied brains from three different age‐groups of C57BL/6J.Nia 
mice obtained from the NIA Aged Rodent Colony: a “young” group, 
aged 6 months; a “middle” group of 22‐month‐old females and 24‐
month‐old males (approximately 70% survival for each sex, based 
on published lifespan curves for C57BL/6J.Nia mice (Turturro et al., 
1999)); and an “old” group of 26‐month‐old females and 30‐month‐
old males (approximately 30% survival). We observed increased 
phosphorylation of the mTORC2 target AKT S473 in whole brain 
lysates from 22‐ and 26‐month‐old females and 30‐month‐old males 
relative to young control mice (Figure 1a and Figure S1a). This effect 
was specific to mTORC2 and not representative of a generalized in‐
crease in insulin/IGF‐1 signaling, as phosphorylation of AKT T308, 
an mTORC2‐independent site downstream of insulin signaling, was 
not increased in aged mice of either sex. In order to identify the spe‐
cific regions of the brain that contributed to the increased mTORC2 
signaling, we performed immunohistochemistry with antibodies 
against phosphorylated AKT S473 and NeuN, a marker of neuronal 
nuclei. We found that phosphorylation of AKT S473 increased in 
specific regions of the aged mouse brain, including the neurons of 
the hypothalamus as well as cells within the cortex and thalamus 
(Figure 1b, Figure S1b).

2.2 | Development of mice lacking Rictor in 
hypothalamic neurons

Mice lacking mTORC2 signaling in hypothalamic neurons were 
generated by crossing mice conditionally expressing Rictor to mice 
expressing Cre recombinase under the control of the Nkx2.1 pro‐
moter (RictorNkx2.1−/−) (Shiota, Woo, Lindner, Shelton, & Magnuson, 
2006; Xu, Tam, & Anderson, 2008). This promoter is active in most 
of the hypothalamic nuclei during early development, with the ex‐
ception of the suprachiasmatic nucleus (Mieda, Hasegawa, Kessaris, 
& Sakurai, 2017; Ring & Zeltser, 2010; Xu et al., 2008). We verified 
deletion of Rictor in the hypothalamus by determining the expres‐
sion of Rictor mRNA and RICTOR protein from both male and female 
mice (Figure 1c–e and Figure S1c). mTORC2 activity was assessed by 
determining phosphorylation of the mTORC2 substrate AKT S473, 
as well as phosphorylation of mTOR itself at S2481, an autophos‐
phorylation site associated with incorporation into mTORC2 (Copp, 
Manning, & Hunter, 2009). As expected, the phosphorylation of AKT 
S473 and mTOR S2481 was reduced in RictorNkx2.1−/− mice. Brain size 
was normal in RictorNkx2.1−/− mice with no gross abnormalities appar‐
ent (Figure S1d).
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2.3 | Early‐onset, lifelong increase in body 
weight and adiposity of RictorNkx2.1−/− mice

We monitored the body weight and composition of RictorNkx2.1−/− 
mice and their wild‐type littermates. We observed that mice lacking 

hypothalamic Rictor weighed more than their wild‐type littermates 
throughout their lifespan, a difference that was statistically signifi‐
cant up to 22 months of age in females and 26 months of age in males 
(Figure 1f). Periodic assessment of body composition demonstrated 
that in the aging cohort of RictorNkx2.1−/− mice, both sexes had increases 
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in fat mass (Figure 1g) and to a lesser extent, lean mass (Figure 1h); the 
overall effect was a lifelong increase in adiposity (Figure S1e,f).

To characterize the development of these body weight and compo‐
sition phenotypes, we analyzed a second cohort of RictorNkx2.1−/− mice 
and their wild‐type littermates from the time of weaning. RictorNkx2.1−/− 
mice of both sexes tended to be lighter than littermate controls at 
weaning, an effect that was statistically significant in males, yet by 
5–7 weeks of age RictorNkx2.1−/− mice of both sexes weighed more than 
littermate controls (Figure 2a,b). Weight gain generally occurred over a 
distinct period with subsequent stabilization at a new set point relative 
to controls. Increased body weight in young RictorNkx2.1−/− mice reflected 
an increase in fat mass without any change in lean mass (Figure 2c,d). 
Consistently, fat pads were heavier in RictorNkx2.1−/− mice (Figure S2a,b), 
and larger lipid droplets and adipocyte hypertrophy were observed in 
brown and white adipose tissue, respectively (Figure 2e).

Leptin is an adipose‐derived hormone that decreases food intake 
and promotes energy expenditure (Campbell et al., 2017; Chua et al., 
1996; Halaas et al., 1995; Pelleymounter et al., 1995). Loss of leptin 
signaling is sufficient to cause drastic weight gain, whereas weight 
gain due to other mechanisms is associated with hyperleptinemia as 
a compensatory response. As RictorNkx2.1−/− mice have increased adi‐
posity, we determined leptin levels in knockouts and their wild‐type 
littermates. We observed that plasma leptin was significantly increased 
in RictorNkx2.1−/− mice, as was leptin mRNA expression in adipose tissue 
(Figure 2f and Figure S2c). Intriguingly, the increase in plasma leptin 
was observed in RictorNkx2.1−/− mice prior to a measurable increase in 
body weight or adipose mass (Figure 2f,g), and without obvious dif‐
ferences in adipocyte size (Figure S2d,e). Together, our results suggest 
that mTORC2 signaling in Nkx2.1 neurons may have primary effects on 
leptin expression independent of adipose mass.

2.4 | Food intake and energy expenditure in 
RictorNkx2.1−/− mice

We did not detect significant differences in body weight, respiratory 
exchange ratio (RER), food intake, or locomotor activity in 4‐week‐old 

RictorNkx2.1−/− mice (Figure S2f–i). Although RictorNkx2.1−/− mice dis‐
played a slight decrease in energy expenditure on a per animal basis, 
the effect was not significant after correcting for the slightly lower 
body weight of the female RictorNkx2.1−/− mice at this age, either by 
dividing energy expenditure by mass or by using ANCOVA (Figure 
S2j and Table S1). While no consistent change in food intake was 
detected during the period of body weight gain (Figure S2k), we did 
note a trend toward increased hyperphagia in male RictorNkx2.1−/− mice 
upon refeeding (Figure S2l), indicating some dysregulation of the 
mechanism controlling satiety. In adult (24–33 week‐old) mice, body 
weight was higher in RictorNkx2.1−/− mice of both sexes than in their 
wild‐type littermates (Figure S2m), while average energy expendi‐
ture per mouse and food intake were not affected by genotype in 
either gender (Figure 2h,i). Body mass adjusted energy expenditure 
(ANCOVA) was reduced in adult female RictorNkx2.1−/− mice relative to 
their wild‐type littermates, which is consistent with their increased 
adiposity since adipose tissue consumes less energy per unit mass 
(Table S1). At ten months of age, opposite trends were observed in 
the energy expenditure between genders; total energy expenditure 
per mouse was slightly increased in females and slightly reduced in 
male RictorNkx2.1−/− mice. The effect in females was absent after di‐
viding energy expenditure by body weight, but remained marginally 
significant when adjusting by ANCOVA. Thus, energy expenditure 
is unchanged or increased in females, suggesting that food intake 
must explain the higher body weight. In contrast, the decreased 
energy expenditure in males occurs despite their larger size and 
unchanged food intake, suggesting that decreased calorie output 
might contribute to the maintenance of higher body mass in this sex 
(Figure S3a–c and Table S1). However, neither food intake nor daily 
energy expenditure were significantly changed in subsequent meas‐
ures (at 18 months of age) from the same RictorNkx2.1−/− mice, with 
or without adjustment for body weight by ANCOVA (Figure S4a–c 
and Table S1). Intriguingly, beam break analysis revealed decreased 
locomotor activity in 6‐ and 10‐month‐old RictorNkx2.1−/− mice (Figure 
S5a–c), a phenotype that has not been previously associated with 
the mTORC2 signaling pathway.

F I G U R E  1  Hypothalamic mTORC2 signaling increases with age and regulates body weight homeostasis. (a) Quantification of 
phosphorylated AKT residues in whole brain lysate from fasted female and male C57BL.6J.Nia mice; young refers to 6‐month‐old males 
and females (10 males, 5 females), middle refers to 24‐month‐old males and 22‐month‐old females (10 males, 5 females), and old refers 
to 30‐month‐old males and 26‐month‐old females (8 males, 4 females). Quantification of phosphorylated proteins are relative to total 
protein (Dunnett's test following two‐way ANOVA, * = p < .05, ** = p < .01, *** = p < .001). (b) mTORC2 activity, as determined by IHC‐IF 
for phosphorylated Akt S473 (in red), is increased in the hypothalamus of overnight fasted 23‐month‐old female C57BL.6J.Nia mice 
relative to young 8‐month‐old mice. A neuronal nuclei marker is targeted by the NeuN antibody (in green), showing the mTORC2 signaling 
is increased in aged neurons in these regions. Shown are representative images of hypothalamic regions (total n examined = 4 mice/group). 
Scale bar = 100 µm. (c) Expression of Rictor mRNA in hypothalamic tissue of 3‐ to 6‐month‐old RictorNkx2.1−/− mice and controls (n = 5‐8/
group; *** = p < .001, Holm–Sidak test following two‐way ANOVA). (d) Hypothalamic protein lysates from 6‐month‐old male control and 
RictorNkx2.1−/− mice were immunoblotted for phosphorylated and total AKT, phosphorylated and total mTOR, RICTOR, and β‐ACTIN. (e) 
Quantification of RICTOR expression relative to β‐ACTIN and phosphorylated mTOR and AKT relative to total protein (n = 5 control and 
9 RictorNkx2.1−/− mice; left: ** = p < .01, t test; right: Holm–Sidak test following two‐way ANOVA, * = p < .05, *** = p < .001). (f) Longitudinal 
assessment of body weight of control and RictorNkx2.1−/− mice (n = 5–35 per group; p < .05 indicates significant difference between genotypes 
at each time point within the indicated range, Holm–Sidak test following two‐way ANOVA). (g, h) Longitudinal assessment of (g) fat mass and 
(H) lean mass of control and RictorNkx2.1−/− mice (n = 5–29 mice/group; Holm–Sidak test following two‐way ANOVA, * = p < .05, ** = p < .01, 
*** = p < .001). (f–h) The overall effect of genotype (GT), age, and the interaction represents the p‐value from a two‐way ANOVA. Error bars 
represent the SEM
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F I G U R E  2   Early onset of obesity in mice lacking Rictor in hypothalamic neurons. (a and b) The weights of (a) female and (b) male control 
and RictorNkx2.1−/− mice were tracked from 3 to 8 weeks of age (n varies by time point and group, n = 4–31; Holm–Sidak test following two‐
way ANOVA, * = p < .05, ** = p < .01). (c and d) Lean and fat mass in (c) 10‐wk‐old female mice (n = 5‐6/group; Holm–Sidak test following 
two‐way ANOVA, * = p < .05, ** = p < .01, *** = p < .001, solid lines indicate comparisons of fat mass and spotted lines indicate comparison 
of lean mass) and (d) 20‐ to 22‐week‐old male mice (n = 5‐9/group; t test, ** = p < .01). (e) H&E‐stained BAT and gonadal white adipose 
tissue from 24‐ to 26‐wk‐old chow fed male mice. (f) Plasma leptin levels of female and male RictorNkx2.1−/− mice (n = 6–8 mice/group; Sidak 
test following two‐way ANOVA, * = p < .05, ** = p < .01, *** = p < .001, blue/pink stars indicate significant difference vs. male/female 
controls). (Corresponding body weight curve is represented in Figure 6a, week four to nine on chow diet) (g) Fat mass (Left) and body weight 
(Right) of male control and RictorNkx2.1−/− mice (n = 5–6 mice/group; Sidak test following two‐way ANOVA, * = p < .05, *** = p < .001). (h) 
Energy expenditure of 24‐ to 33‐wk‐old female and male mice; per mouse basis (n = 6 mice/group; Sidak test following two‐way ANOVA, 
* = p < .05). (i) Twenty‐four hour food intake of 24‐ to 33‐wk‐old female and male mice on normal chow (n = 6 mice/group; Sidak test 
following two‐way ANOVA, * = p < .05).The overall effect of either genotype (GT) and age (panels A, B, F, G), GT and feeding status (C) or GT 
and sex (panels H‐I), and the interaction represents the p‐value from a two‐way ANOVA. Error bars represent the SEM
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2.5 | RictorNkx2.1−/− mice are hypoactive and exhibit 
reduced voluntary activity

To more definitively assess spontaneous locomotor activity in 
RictorNkx2.1−/− mice in their home cage environment, we employed te‐
lemetry. We found that activity was robustly decreased in both sexes, 
although the effect was most pronounced in females (Figure 3a–d), 
owing in part to the fact that wild‐type females are considerably 
more active than their male counterparts. Fasting markedly in‐
creased locomotor activity, as expected (Yamanaka et al., 2003), but 
the decreased activity phenotype remained in RictorNkx2.1−/− mice. 
Body weight and locomotor activity were not correlated in this 
experiment, suggesting that the phenotype was not secondary to 
changes in body weight per se (Figure S5d).

A neural circuit involving the preoptic area and dorsomedial hy‐
pothalamus was recently shown to influence both physical activity 
and core body temperature (Zhao et al., 2017), and mice lacking Rictor 
in the whole brain have decreased core body temperature (Kocalis et 
al., 2014). Using implanted telemetry probes, we observed a subtle 
but consistent reduction in core body temperature in ad libitum fed 
female RictorNkx2.1−/− mice during the middle of the dark period, with 
a similar tendency that did not reach statistical significance in males 
(Figure S6a–d).

In rodents, locomotor activity can be categorized as sponta‐
neous (e.g., voluntary activity or exploration) or motivated (e.g., food 
seeking). To first establish that the decreased locomotor activity in 
RictorNkx2.1−/− mice was not due to motor deficits, we tested running 
using an accelerating treadmill protocol (Frederick et al., 2015). Both 
sexes of RictorNkx2.1−/− mice were able to run (Figure 3e), exhibiting 
activity levels far in excess of spontaneous home cage movement 
(Majdak et al., 2016; Zombeck, Deyoung, Brzezinska, & Rhodes, 
2011). We observed an overall effect of genotype on the total dis‐
tance run at exhaustion, with a small but significant reduction for 
female RictorNkx2.1−/− mice (Figure 3e). This small effect is not con‐
sistent with a major motor deficit, and may be attributable to the 
increased body weight of mice lacking hypothalamic Rictor, and/or 
their decreased habitual level of activity.

To address the possibility of altered food seeking behavior in 
RictorNkx2.1−/− mice, we assessed their motivation to obtain food. 
Mice were trained to press a lever to obtain a food pellet, then sub‐
jected to a progressive ratio (PR) schedule of reinforcement, where 
the number of lever presses required to obtain each food pellet in‐
creased exponentially (Alhadeff & Grill, 2014; Betley et al., 2015). 
Break point analysis (number of pellets received prior to a 10‐min 
break in lever pressing) revealed that control and RictorNkx2.1−/− mice 
are equally motivated to obtain food under both fed and fasted con‐
ditions in this operant task, whether assessed for one hour during 
the light period or overnight during the dark period (Figure 3f). 
Next, we determined the willingness of RictorNkx2.1−/−mice to press 
the lever in the absence of a food pellet reward (extinction) and 
observed no significant effects (Figure 3g). Together, these data 
indicate that RictorNkx2.1−/− mice have no change in motivation to 
obtain food, which suggests that goal‐oriented activity is retained 

in RictorNkx2.1−/− mice despite altered basal activity (Krashes et al., 
2011). We next placed running wheels in home cages to assess the 
intrinsic motivation of RictorNkx2.1−/− mice toward physical activity. 
RictorNkx2.1−/− mice exhibited a major decrease in voluntary wheel 
running when fed ad libitum (Figure 3h). Upon food deprivation, 
running wheel activity was partly restored during the dark phase in 
RictorNkx2.1−/− mice (Figure 3i), but the expected increase in activity 
during the light period relative to ad libitum fed mice was largely 
blunted (Krizo et al., 2018). These data support the conclusion that 
RictorNkx2.1−/− mice have a reduced intrinsic drive to be physically 
active.

2.6 | Assessment of endocrine, hormonal and 
neuropeptide changes in RictorNkx2.1−/− mice

As Nkx2.1‐Cre has been shown to be active not only in the hypo‐
thalamus, but also in cells within the thyroid and pituitary (Xu et 
al., 2008), we next assessed whether RictorNkx2.1−/− mice displayed 
changes in related pathways that might contribute to their growth 
and body weight phenotypes. Intriguingly, we found a significant in‐
crease in the circulating level of insulin‐like growth factor 1 (IGF‐1) 
in both sexes of RictorNkx2.1−/− mice relative to their wild‐type lit‐
termates (Figure S7a). Consistent with increased growth hormone/
IGF‐1 action, we observed a statistically significant increase in the 
femur lengths of female RictorNkx2.1−/− mice (Figure S7b) as well as 
increases in the weights of lean tissues, including liver and skele‐
tal muscle, in three‐month‐old mice (Figure S7c,d). In contrast, we 
found no significant differences in T4 or corticosterone levels be‐
tween RictorNkx2.1−/− knockouts and their littermate controls (Figure 
S7e,f). Thus, we consider it unlikely that the metabolic phenotypes 
we observe are a result of altered mTORC2 activity in the thyroid or 
changes in the hypothalamus–pituitary–adrenal axis, but increased 
IGF‐1 signaling may play a role in the increased lean mass. Notably, 
growth hormone/IGF‐1 signaling is normally associated with de‐
creased adiposity (Bengtsson et al., 1993; Berryman, Glad, List, & 
Johannsson, 2013) and thus cannot explain the expanded adipose 
tissue mass in RictorNkx2.1−/− mice.

The fact that RictorNkx2.1−/− mice maintain increased adiposity 
despite high leptin is consistent with the possibility that they are 
leptin resistant. Since many leptin‐responsive neurons are located 
within the hypothalamus, one possibility is that mTORC2 is directly 
required downstream of leptin to suppress food intake. To test this 
possibility, we injected control and knockout mice with recombi‐
nant leptin and found that high‐dose leptin suppresses food intake 
and body weight in RictorNkx2.1−/− mice (Figure S8a,b). We also ob‐
served similar levels of pSTAT3 in the hypothalamus of control and 
RictorNkx2.1−/− mice (Figure S8c,d), suggesting that proximal leptin 
signaling is at normal levels. To further probe potential mechanisms 
underlying the dysregulated body weight in RictorNkx2.1−/− mice, we 
examined the expression of hypothalamic neuropeptides. The orex‐
igenic neuropeptide NPY was significantly increased in females, 
whereas the anorexigenic POMC and CART were reduced by ~50% 
and 25%, respectively, in males (Figure S8e,f). Thus, Rictor deletion 
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in Nkx2.1‐expressing neurons altered the expression of several 
hypothalamic neuropeptides known to influence satiety and food 
intake.

2.7 | mTORC2 signaling is essential for 
healthspan and lifespan

We next sought to determine the overall effect of hypothalamic 
Rictor deletion on health and longevity. Mice and humans become 
increasingly frail with age, and we applied a recently validated mouse 
frailty index that permits the quantification of the accumulating 
deficits that occur with age and predicts mortality risk (Kane et al., 
2016; Rockwood et al., 2017; Whitehead et al., 2014). We observed 
that both female and male RictorNkx2.1−/− mice develop significantly 
greater frailty than their control littermates (Figure 4a,b). As por‐
tended by this increased frailty, we find that loss of hypothalamic 
Rictor shortens the lifespan of both female and male mice (p = .005, 
log‐rank test stratified by genotype) (Figure 4c). Cox regression like‐
wise indicated a significant negative effect of hypothalamic deletion 
of Rictor on survival (hazard rate (HR) = 1.69), and no interaction of 
genotype with sex was detected.

Genetic disruption of mTORC2 signaling in several key metabolic 
tissues, including adipose tissue, liver, pancreas, and skeletal muscle, 
is associated with disruption of glucose intolerance and insulin resis‐
tance (Bentzinger et al., 2008; Blair, Archer, & Hand, 2013; Kumar 
et al., 2008, 2010; Lamming, Demirkan, et al., 2014; Lamming, 
Mihaylova, et al., 2014; Lamming et al., 2012; Polak et al., 2008; 
Tang et al., 2016). We found that both male and female RictorNkx2.1−/− 
mice exhibit lifelong mild glucose intolerance (statistically significant 
in males at all ages tested and in females only at 6 months of age, 
Figure 5a–c). Insulin sensitivity of young RictorNkx2.1−/− mice was sim‐
ilar to that of their littermate controls in both sexes (Figure 5d,e). 
However, RictorNkx2.1−/− mice developed age‐related insulin resis‐
tance, an effect that was particularly prominent in males (Figure 5f). 
Collectively, these results demonstrate a critical role for hypotha‐
lamic mTORC2 in maintaining physiological and metabolic health 
with age.

2.8 | Loss of hypothalamic mTORC2 increases 
susceptibility to diet‐induced obesity

Deletion of Rictor in the whole brain or POMC neurons (Kocalis et 
al., 2014), or in Nkx2.1‐expressing neurons (this report), increases 
adiposity in male mice under chow feeding. However, the interac‐
tions of these genotypes with high calorie diets that are more rel‐
evant to current eating habits have not been investigated and no 
previous studies have included females. We therefore challenged 
RictorNkx2.1−/− mice with a high‐fat, high‐sucrose (HFHS) diet. Both 
sexes lacking hypothalamic Rictor exhibited increased susceptibility 
to diet‐induced obesity, with significantly greater weight gain in fe‐
males detectable even during the first week (Figure 6a,b). Adipose 
mass was significantly increased in RictorNkx2.1−/− mice as compared 
to littermate controls fed the same HFHS diet (Figure S9a,b).

We found that fasting blood glucose was significantly increased 
in both RictorNkx2.1−/− males and females fed a HFHS diet (Figure 6c). 
Fasting and refed plasma insulin levels were increased in female 
RictorNkx2.1−/− on HFHS diet (Figure 6d). Consistently, RictorNkx2.1−/− 
mice fed a HFHS diet tended to have impaired glucose tolerance and 
insulin sensitivity as compared to littermate controls fed the same 
HFHS diet (Figures S9c–e). Plasma and liver triglycerides trended to 
increase in female RictorNkx2.1−/− mice fed a chow diet (Figure S9f). 
Although there was no change in triglyceride levels in the plasma or 
livers of RictorNkx2.1−/− mice of either sex on HFHS diet as compared to 
littermate controls, lipid content was elevated in the gastrocnemius 
muscles of female RictorNkx2.1−/− mice (Figure S9g–i). Thus, the lack of 
mTORC2 signaling in Nkx2.1 neurons exacerbates body weight gain 
and the resulting impairment of glucose homeostasis when mice are 
exposed to an unhealthy diet.

2.9 | Hyperphagia is the primary driver of weight 
gain in RictorNkx2.1−/− mice

Because the body weights of RictorNkx2.1−/− mice remain stably ele‐
vated over those of controls across most of the lifespan, there is little 
opportunity to capture a substantial energetic imbalance. In order to 

F I G U R E  3  Voluntary home cage and running wheel activity but not goal‐oriented tasks is reduced in RictorNkx2.1−/− mice. (a and b) Traces 
of average home cage activity of 13‐ to 14‐wk‐old female (a) and male (b) mice under the conditions indicated, as determined by telemetry 
with counts binned into 10‐min blocks. The overall effect of genotype (GT), time, and the interaction represents the p‐value from a two‐
way RM ANOVA. (c and d) Quantification of the data in panels a and b; activity during the fed condition represents a two day average; 
during fasting and refeeding over ~24‐hr time period (n = 4–5 mice/group; Sidak test following two‐way ANOVA, * = p < .05, ** = p < .01, 
*** = p < .001). (e) Average distance run on a treadmill at exhaustion for 11‐wk‐old male and female mice (n = 4–10 mice/group, Sidak 
test following two‐way ANOVA, * = p < .05, ** = p < .01). (f) Eight‐month‐old control and RictorNkx2.1−/− mice of both sexes were trained to 
press a lever to obtain food pellets. Pellets received prior to a 10‐min gap without earning a pellet (the “break point”) in a progressive ratio 
operant task conducted for one hour during the light period under fed and fasted conditions (1h PR) or during an overnight progressive ratio 
operant task under fed and fasted conditions (overnight PR). (n = 5–7 mice/group; Sidak test following two‐way ANOVA, * = p < .05). (g) 
Number of active lever presses during an overnight extinction paradigm where mice do not receive food pellets in response to lever presses 
(n = 5–7 mice/group; Sidak test following two‐way ANOVA, * = p < .05). (e–g) The overall effect of genotype (GT), sex, and the interaction 
represents the p‐value from a two‐way ANOVA. (h and i) Voluntary running wheel activity of 4‐month‐old male mice during (h) ad libitum 
feeding and (i) 24‐hr food deprivation. Data represented as revolutions per 10‐min bin. Inset, cumulative running wheel activity during the 
light and dark periods (n = 5‐8/group; Sidak test following two‐way RM ANOVA, * = p < .05, *** = p < .001). (h and i) The overall effect of 
genotype (GT), time, and the interaction represents the p‐value from a two‐way ANOVA. Error bars represent the SEM
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gain insight into the mechanism that establishes this weight difference 
in RictorNkx2.1−/− mice, we placed mice in metabolic chambers during 
the first week of HFHS diet feeding, a period of rapid weight gain. As 
in the previous experiment, we observed that female RictorNkx2.1−/− 
mice gained significantly more weight than controls within one week 
of HFHS exposure (Figure 6e). Female RictorNkx2.1−/− mice maintained 
their low level of spontaneous activity following the shift from chow 
to HFHS diet (Figure 6f and Figure S5a). During the period of body 
weight gain on HFHS diet, there was no decrease in total energy ex‐
penditure on a per mouse basis or when adjusted for total body mass, 
suggesting that it could not account for the preferential weight gain of 
the RictorNkx2.1−/− mice (Figure 6g and Table S1). Female RictorNkx2.1−/− 
mice also exhibited a small but significant increase in RER (Figure 6h), 
suggesting a shift toward use of carbohydrates as an energy source 
and/or increased synthesis of fatty acids. Food intake was increased 
for the first three days during the dark period in both female and male 
RictorNkx2.1−/− mice (Figure 6i), and subsequently remained measur‐
ably higher in males but not in females during continued exposure to 
HFHS diet (Figure 6j). Thus, a modest increase in food consumption, 
rather than a decrease in energy expenditure, may be the primary 
driver of weight gain in RictorNkx2.1−/− mice.

3  | DISCUSSION

The mTOR complexes are ancient sensors of nutrient status and 
metabolic state that have profound tissue‐specific effects on health 
and longevity. Inhibition of these complexes via rapamycin or ge‐
netic interventions that target mTORC1 signaling extends lifespan 
across species. Although the role of mTORC2 is comparatively less 
studied, targeting of this pathway in the liver is sufficient to shorten 
the lifespan of male mice, whereas disrupting mTORC2 in worms 
can alternately lead to increased or decreased longevity (Lamming, 
Mihaylova, et al., 2014; Mizunuma et al., 2014; Robida‐Stubbs et 
al., 2012; Soukas et al., 2009). Here, we report that hypothalamic 
mTORC2 activity increases with age in mice and that genetically 
ablating this complex in hypothalamic neurons is detrimental to 
metabolic health and longevity. RictorNkx2.1−/− mice are hypoactive, 
predisposed to adiposity and diet‐induced weight gain, become 
measurably more frail as they age, and have decreased overall 
survival.

The Nkx2.1 promoter drives expression of Cre recombinase in 
a wide range of hypothalamic nuclei (Ring & Zeltser, 2010; Xu et al., 
2008). Reporter gene expression has also been mapped to scattered 

F I G U R E  4  Hypothalamic mTORC2 signaling is essential for healthspan and lifespan. (a and b) Frailty was assessed longitudinally in (a) 
female and (b) male mice starting at 21 months of age (n = numbers vary month by month; 2–24 mice/group at each time point). (c) Kaplan–
Meier plot showing the lifespan of female and male control and RictorNkx2.1−/− mice. The overall effect of genotype (RictorNkx2.1−/−) and sex (M) 
was determined using a Cox proportional hazards test (HR, hazard ratio). The table shows the median lifespan for each group, the percentage 
decrease in median lifespan for each sex, and the two‐tailed stratified log‐rank p‐value for the decrease in lifespan as a result of deletion of 
hypothalamic Rictor. Error bars represent the SEM
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cells in the cerebral cortex, striatum, and globus pallidus, and in the 
thyroid, pituitary, and lung during development. Currently, there are 
no other genetic tools available that targets the majority of the neu‐
ronal subtypes that reside within the hypothalamus. The Nkx2.1‐Cre 
system has therefore been used widely to study the hypothalamus de‐
spite the limitations of its specificity (Burmeister et al., 2017; Chong, 
Greendyk, Greendyk, & Zeltser, 2015; Chong, Vogt, Vogt, Hill, Brüning, 
& Zeltser, 2015; Heinrich, Meece, Wardlaw, & Accili, 2014; Ring & 
Zeltser, 2010). We attempted to overcome this limitation using an in‐
ducible Nkx2.1.Cre model to delete Rictor during adulthood (Taniguchi 

et al., 2011). However, we did not observe a decrease in Rictor mRNA 
expression in the hypothalamus or difference in body weight and adi‐
posity in this mouse model (data not shown). This is consistent with a 
prior report that Nkx2.1 expression is substantially reduced after birth 
(Magno, Catanzariti, Nitsch, Krude, & Naumann, 2009). Thus, with 
currently available systems, we are unable to completely the avoid the 
potential of off‐target effects resulting from constitutive expression 
of Nkx2.1‐Cre. However, we note that thyroid hormone levels are not 
affected in RictorNkx2.1−/− mice, suggesting that the phenotypes we ob‐
serve here do not result from inactivation of mTORC2 in the thyroid.

F I G U R E  5   RictorNkx2.1−/− mice have lifelong impairment of glucose tolerance and develop insulin resistance. Metabolic health was 
assessed by performing (a–c) a fasting glucose tolerance test (GTT) and (d–f) a fasting insulin tolerance test (ITT) on both sexes of control 
and RictorNkx2.1−/− mice at approximately (a and d) 3 months, (b and e) 6 months, and (c and f) 18 months of age. (a and d) n = 6–14 mice/group, 
2–3 months of age; (b and e) n = 9–10 mice/group, 5–6 months of age; (c and f) n = 20–32 mice/group, 15–20 months of age. Area under the 
curve: the overall effect of genotype (GT), sex, and the interaction represents the p‐value from a two‐way ANOVA; * = p < .05 from a Sidak's 
post‐test examining the effect of parameters identified as significant in the two‐way ANOVA. Error bars represent the SEM
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Both obesity and physical inactivity are thought to accelerate 
age‐related decline, either independently or in combination, and re‐
duce life expectancy. While obesity per se is consistently related to 
all‐cause mortality across studies (Anon, 2016; Flegal, Kit, Orpana, 
& Graubard, 2013), it is increasingly appreciated that rapid weight 
gain early in life can be especially detrimental (Wagener, Müller, & 
Brockmann, 2013). Restricted in utero growth and/or transient lower 
body weight postnatally can trigger rapid catch‐up growth that is 
associated with shorter lifespan independently from adiposity (Hou, 
Bolt, & Bergman, 2011; Jennings, Ozanne, Dorling, & Hales, 1999; 
Ozanne & Hales, 2004; Ricklefs, 2006; Rollo, 2002; Sayer et al., 
1998). We find that disruption of Rictor in hypothalamic neurons 
leads to lower body weight at the time of weaning followed by a 
rapid, excessive gain in body weight during postnatal development. 
In general, changes in food intake and/or energy expenditure were 
too modest to detect in young mice on chow diets. We view food in‐
take as the most likely explanation for weight gain, given that subtle 
changes in food consumption are sufficient to explain considerable 
changes in body weight (Tschop et al., 2011), and that males are hy‐
perphagic during refeeding. Moreover, food intake was clearly the 
major contributing factor in the accelerated weight gain experienced 
by both genders after switching to HFHS diet. We did, however, de‐
tect a modest decrease in energy expenditure in chow fed males 
at a single time point (10 months of age). Thus, it remains possible 
that there is also a small and potentially sex‐specific contribution 
of altered energy expenditure to the weight gain or higher weight 
maintenance of RictorNkx2.1−/− mice.

Weight gain in RictorNkx2.1−/− mice primarily reflected an increase 
in adiposity, yet we also observed a modest increase in circulating 
IGF‐1, femur length, and lean mass in the aging cohorts. Growth 
hormone‐releasing hormone, a neuropeptide expressed in the hy‐
pothalamus, stimulates the pituitary gland to release growth hor‐
mone, a major regulator of IGF‐1 expression (Junnila, List, Berryman, 
Murrey, & Kopchick, 2013). Thus, the increased levels of IGF‐1 that 
we observe could be due to altered hypothalamic release of growth 
hormone‐releasing hormone. Alternatively, they could also be a 
direct consequence of altered pituitary function. Further research 
will be required to distinguish between these possibilities and to 
determine the role of IGF‐1 in the metabolic effects we observed. 
Reduced signaling through the growth hormone/IGF‐1 axis due to 

genetic mutations or caloric restriction is associated with increased 
healthspan and lifespan in model organisms (Mao et al., 2018; 
Milman, Huffman, & Barzilai, 2016). These results support the idea 
that the early‐onset obesity observed in RictorNkx2.1−/− mice and the 
higher circulating level of IGF‐1 could have a combined long‐term 
negative impact on health and lifespan.

In addition, the majority of studies have found positive cor‐
relations between physical activity and longevity in rodents 
(Bronikowski et al., 2003; Holloszy, 1993; Holloszy, Smith, Vining, 
& Adams, 1985; Lokkegaard, Larsen, & Christensen, 2016; Mlekusch 
et al., 1996; Vogel et al., 2009) as well as humans (Lokkegaard et 
al., 2016; Rizzuto & Fratiglioni, 2014; Vogel et al., 2009). In normal 
weight individuals, regular physical activity has been estimated to 
extend life by 7.2 years, and conversely, inactivity to decrease life by 
3.1 years (Moore et al., 2012). RictorNkx2.1−/− mice have substantially 
reduced spontaneous activity, and understanding the pathways that 
control this intrinsic drive to move could lead to new approaches to 
target a key modifiable factor that imparts resistance to stress and 
injury in older adults and delays the onset of age‐associated diseases 
(Cabanas‐Sánchez et al., 2018; Huffman, Schafer, & LeBrasseur, 
2016).

Physical activity is an important component of energy expen‐
diture in humans that negatively correlates with body weight gain 
and can act independently from changes in food intake (Bamman 
et al., 2014; Johannsen & Ravussin, 2008; Ladabaum, Mannalithara, 
Myer, & Singh, 2014; Mozaffarian, Hao, Rimm, Willett, & Hu, 2011; 
Pontzer et al., 2016; Warburton, Nicol, & Bredin, 2006). Thus, our 
finding that locomotor activity decreased in the absence of a mea‐
surable change in energy expenditure in young adult RictorNkx2.1−/− 
mice may appear counterintuitive. However, several recent studies 
have indicated that the effect of locomotor activity on total energy 
expenditure is far less in mice than in humans, and may be negligible 
under the conditions used for most experiments (Abreu‐Vieira, Xiao, 
Gavrilova, & Reitman, 2015; Dauncey & Brown, 1987; Moruppa, 
1990; O'Neal, Friend, Guo, Hall, & Kravitz, 2017; Virtue, Even, & 
Vidal‐Puig, 2012). While past estimates have placed the fraction 
of total energy expenditure devoted to physical activity in mice as 
high as 38% (Dauncey & Brown, 1987), Virtue et al. (2012) have sug‐
gested that these studies overestimated the contribution of physical 
activity per se because other energy consuming processes correlate 

F I G U R E  6   RictorNkx2.1−/− mice have increased susceptibility to diet‐induced obesity. (a and b) The body weight of control and RictorNkx2.1−/− 
mice of both sexes was tracked on chow diet and following a switch to a high‐fat, high‐sucrose (HFHS) diet as indicated, and (a) weight 
and (b) percentage weight gain on HFHS diet were plotted (n = 5‐12/group; Sidak test following two‐way ANOVA, * = p < .05, ** = p < .01, 
*** = p < .001). The overall effect of genotype (GT), time (T), and the interaction represents the p‐value from (a) a two‐way ANOVA or a 
(b) RM ANOVA. (c and d) Mice fed a HFHS diet for 3 weeks were fasted overnight and then refed for 4 hr, with collection of blood for the 
determination of (c) blood glucose and (d) insulin (n = 4–12 mice/group; Sidak's test following two‐way ANOVA, * = p < .05, **p = < .01). 
(e–i) Metabolic chambers were used to interrogate the metabolic effects of 1 week of HFHS diet feeding. (e) Body weight (f) spontaneous 
activity (g), energy expenditure per mouse (h) RER, and (i) average food intake during days 1–3 of HFHS feeding (n = 6 mice/group; Sidak's 
test following two‐way ANOVA, * = p < .05, ** = p < .01, *** = p < .001). (c–i) The overall effect of genotype (GT), sex, and the interaction 
represents the p‐value from a two‐way ANOVA. (j) Food intake (left) and body weight (right) of control and RictorNkx2.1−/− mice of both sexes 
was tracked on a HFHS diet (n = 6 mice/group; Sidak's test following RM two‐way ANOVA, * = p < .05, ** = p < .01, *** = p < .001, blue/
pink stars indicate significant difference vs. male/female controls). The overall effect of genotype (GT), time on diet (T), and the interaction 
represents the p‐value from a two‐way ANOVA. Error bars represent the SEM
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with activity. They determined that the true energetic cost of physi‐
cal activity is ~10% of total energy expenditure at thermoneutrality, 
and much less under standard housing conditions, consistent with 
a prior study that used similar methods to estimate ~5% (Moruppa, 
1990). Thus, even the profound decrease in locomotor activity that 
we observe in RictorNkx2.1−/− mice is likely to account for only a very 
small change in energy expenditure or weight gain. However, the 
neural pathways controlling the set point for activity level are of 
significant interest, given the clear benefits of both deliberate exer‐
cise and spontaneous movement for human health (Bamman et al., 
2014; Johannsen & Ravussin, 2008; Pontzer et al., 2016; Warburton 
et al., 2006). Elevated home cage activity early in the dark period 
and during food deprivation can be associated with food seeking 
behavior, even when total food intake is unchanged (Mistlberger, 
1994; Yang et al., 2015). To clarify whether motivation to obtain food 
was altered in the RictorNkx2.1−/− mice, we measured lever pressing 
in a progressive ratio operant task. The results clearly indicate that 
RictorNkx2.1−/− mice are equally motivated to obtain food under both 
ad libitum feeding and fasting conditions. Collectively, our findings 
support a direct regulation of physical activity level by neuronal 
mTORC2, rather than a secondary effect of food seeking behavior.

Mice lacking Rictor in Nkx2.1‐expressing cells display markedly 
increased susceptibility to diet‐induced obesity, a phenotype that 
was not previously assessed in mice lacking neuronal mTORC2 ac‐
tivity (Kocalis et al., 2014). Total energy expenditure was unaffected 
by genotype in mice consuming a high‐fat, high‐sucrose diet, sug‐
gesting that food intake (or absorption) plays a major role in weight 
gain. Consistently, higher food intake was recorded in both sexes 
over the first few days of HFHS diet feeding, when the rate of weight 
gain was highest, and food intake remained high in males over the 
subsequent weeks. Obesity and adiposity are well known to be as‐
sociated with impaired glucose homeostasis, and thus, a limitation 
of the present study is that we cannot directly assess the direct 
versus indirect regulation of glucose homeostasis by hypothalamic 
mTORC2. We note that on chow diet, glucose intolerance is more 
prevalent in male RictorNkx2.1−/− mice, whereas the increase in adipos‐
ity is more pronounced in females, suggesting that the two effects 
may be somewhat independent. As we observed changes in the lev‐
els of several hypothalamic neuropeptides (e.g., AgRP, NPY, POMC, 
CART) involved in satiety, food intake, and energy balance, we con‐
sider it likely that the metabolic effects of hypothalamic Rictor on 
distinct neuronal populations mediate growth, adiposity, and met‐
abolic phenotypes. A direct effect of hypothalamic Rictor loss on 
glucose tolerance would be consistent with the previously proposed 
role for central and hypothalamic insulin resistance in the mainte‐
nance of systemic glucose homeostasis (Chen, Balland, & Cowley, 
2017; Koch et al., 2010).

It will be of significant interest to elucidate the molecular events 
that lie upstream and downstream of mTORC2 activity in hypotha‐
lamic neurons. Insulin signaling is known to stimulate mTORC2‐de‐
pendent phosphorylation of Akt S473 in multiple cell types, and 
neuron‐specific disruption of the insulin receptor (IR) driven by 
Nestin‐Cre increases body weight and fat mass (Bruning et al., 2000; 

Kappeler et al., 2008). However, deletion of the IR in Nkx2.1‐ex‐
pressing neurons does not have any effect on body weight or com‐
position (Chong, Greendyk, et al., 2015), possibly due to the IGF‐1 
receptor playing a more prominent role than the IR in the hypothal‐
amus (Kleinridders, Ferris, Cai, & Kahn, 2014) or due to activation 
of PI3‐kinase downstream of the leptin receptor (Lamming, 2014). 
Intriguingly, disruption of the IR in the arcuate nucleus reduces phys‐
ical activity in young mice (Lin et al., 2010; Taguchi, Wartschow, & 
White, 2007), and re‐establishment of IR expression specifically in 
POMC neurons is sufficient to restore physical activity (Lin et al., 
2010). These findings support the notion that the hypothalamic IR/
mTORC2/Akt signaling cascade plays an important role in determin‐
ing body weight homeostasis and locomotor activity in vivo. It is in‐
teresting to speculate that the age‐dependent increase of mTORC2 
activity we observed in the hypothalamus of wild‐type mice may 
help to preserve fitness and longevity by promoting physical activity.

4  | CONCLUSION

We demonstrate that hypothalamic mTORC2 signaling regulates 
physical activity independently from food seeking and is essential 
for normal metabolic health and longevity. In humans, it is well es‐
tablished that obesity correlates with physical inactivity and that 
exercise is a key modifiable lifestyle factor that improves overall 
health, decreases adiposity, and positively influences life expectancy 
(Goedecke & Micklesfield, 2014; Patterson & Levin, 2008; Verheggen 
et al., 2016). Thus, elucidation of the relevant neuronal populations, 
neural circuitry, and downstream signals responsible for mTORC2‐
mediated changes in activity and energy balance has the potential to 
offer new strategies to treat obesity and extend healthspan that are 
complementary to existing strategies for diet modification. Moreover, 
our findings imply that mTOR kinase inhibitors now being explored as 
interventions to rejuvenate aged tissues in the elderly (Mannick et al., 
2018), as well as mTORC2‐specific inhibitors in development for the 
treatment of cancers (Murray & Cameron, 2017), should be evaluated 
carefully for long‐term effects on frailty and general health.

5  | MATERIAL S AND METHODS

5.1 | Materials

Antibodies to phospho‐Akt S473 (4060, 9271), phospho‐Akt T308 
(9275), Akt (4691, 9272), Rictor (2140), phospho‐mTOR S2481 
(2974), mTOR (2972), and phospho‐Stat3 Y705 (9145) were from 
Cell Signaling Technology. The β‐actin HRP (ab49900) antibody 
was from Abcam. Antibody to NeuN (MAB377) was from EMD 
Millipore Sigma. The Alexa Fluor 488 (A11029) and Alexa Fluor 594 
(A11012) antibodies were purchased from Thermo Fisher Invitrogen. 
Vectashield Mounting Media with DAPI (H‐1200) was purchased 
from VWR. SignalStain Ab Diluent (8112) was purchased from Cell 
Signaling Technology. DAKO® Protein Block Serum‐Free was pur‐
chased from Fisher Scientific. Tough Tubes with Caps (13119‐500) 
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and 1.4‐mM ceramic beads (13113‐325) were purchased form Mo‐
Bio Laboratories. Protease and phosphatase inhibitor cocktail tab‐
lets were from Thermo Fisher.

5.1.1 | Animal use and care

All animal procedures conducted at the University of Pennsylvania 
and the William S. Middleton Memorial VA Hospital were approved 
by the University of Pennsylvania Institutional Animal Care and Use 
Committee, and the Institutional Animal Care and Use Committee of 
the William S. Middleton Memorial Veterans Hospital, respectively. 
Mice were maintained under 12‐hr light/dark cycles at ~21°C and ei‐
ther fed a standard laboratory chow (U. Penn: Laboratory Rodent Diet 
5010, LabDiet; Madison: Laboratory Rodent Diet 5001; LabDiet) or 
a high‐fat, high‐sucrose diet (Research Diets, D08112601, 45 kcal% 
fat and 30 kcal% sucrose). C57BL/6J.Nia mice obtained at different 
ages for Western blotting were maintained by the National Institute 
on Aging Aged Rodent Colony with ad libitum access to NIH 31 diet 
and were housed locally for 2–4 weeks with ad libitum access to 
LabDiet 5001 diet and free access to water prior to euthanasia by 
cervical dislocation. Mice were fasted overnight and sacrificed ap‐
proximately 16 hr later as previously described (Baar, Carbajal, Ong, 
& Lamming, 2016). For immunohistochemistry, C57BL/6J.Nia fe‐
male mice were obtained at approximately 4 months of age (young) 
and 16–19 months of age (old) and housed with ad libitum access to 
LabDiet 5001 diet and free access to water prior to perfusion as de‐
scribed below at approximately 6 months (young) or 22 months (old) 
of age. Mice lacking Rictor in Nkx2.1‐expressing neurons were gener‐
ated by crossing Rictorfl/fl mice (Guertin et al., 2009) to mice express‐
ing Cre recombinase under the control of the Nkx2.1 promoter (Xu 
et al., 2008); mice were backcrossed to C57BL/6N and genotyped 
to ensure all mice expressed a functional copy of Nnt (Fontaine & 
Davis, 2016). Littermate Rictorfl/fl or pooled Rictorfl/fl and Rictorfl/+ are 
defined as controls in the figures. For tissue harvest, mice were sac‐
rificed by cervical dislocation and tissues were harvested and frozen 
in liquid nitrogen and stored at −80°C until use.

5.2 | Immunoblotting

For Western blots in Figure S1a, mice were fasted overnight and 
sacrificed approximately 16 hr later. Cells and tissue samples were 
lysed in cold RIPA buffer supplemented with phosphatase inhibitor 
and protease inhibitor cocktail tablets. Tissues were lysed in RIPA 
buffer as previously described (Arriola Apelo et al., 2016) using a 
FastPrep 24 (M.P. Biomedicals) with bead‐beating tubes and ce‐
ramic beads (Mo‐Bio Laboratories), and then centrifuged for 10 min 
at 17, 000 × g. Protein concentration was determined by Bradford 
(Pierce Biotechnology). 20 µg protein was separated by SDS–PAGE 
(sodium dodecyl sulfate–polyacrylamide gel electrophoresis) on 8%, 
10%, or 16% resolving gels (Life Technologies/Thermo Fisher) and 
transferred to PVDF membrane and then immunoprobed as previ‐
ously described (Baar et al., 2016). Imaging was performed using a GE 
ImageQuant LAS 4000 imaging station, and images were quantified 

using NIH ImageJ. Samples in which no total protein was detected 
were excluded from the analysis of both the phosphorylated and 
total protein. For immunoblots in Figure 1d,e, and S1b whole cell 
lysates were prepared by homogenizing frozen tissue with RIPA lysis 
buffer supplemented with protease and phosphatase inhibitor cock‐
tails (Roche) in TissueLyser (Qiagen). Twenty micrograms of whole 
cell lysate was run on 4%–15% gradient gel (Bio‐Rad) and transferred 
to PVDF membrane (Immobilon). Each blot was cut into maximum 
of three strips, blocked with 5% blotting blocker (Bio‐Rad), and 
probed with different primary antibodies (Rictor and phosphopro‐
teins) at 1:2,000 dilution followed by secondary antibody incubation 
(1:5,000 dilution). Immunoblots were developed using SuperSignal 
West femto or pico kit (Thermo Fisher Scientific) on a Bio‐Rad 
Imaging System. Membranes were stripped and reprobed for total 
mTOR, Akt, and β‐actin.

5.3 | Immunohistochemistry

C57BL/6J.Nia female mice were gravity perfused after an over‐
night fast (approximately 16 hr) through the left ventricle with 10% 
formalin for 15 min. Brains were removed, sliced in half in a sagit‐
tal plane on ice, and fixed in 10 ml 10% formalin overnight in 4°C. 
Subsequently, the tissue was transferred to 10 ml of 30% sucrose 
for 24–48 hr (until the tissue sank to the bottom of a 15 ml coni‐
cal) at 4°C. Once fixed, the tissues were embedded in OCT com‐
pound and stored at −80°C until sectioning. Sectioning was done 
with a Lecia DM 4000B cryostat at 10 µm. Slides were washed with 
1X PBS twice at RT. Blocking was done by incubating the slides in 
serum‐free blocking solution (Dako) for 30 min at RT. Slides were 
then washed three times with PBS. Primary antibodies targeting 
p‐Akt S473 (1:200 dilution) and NeuN (1:100 dilution) were used. 
Secondary antibodies targeting primary antibodies were conjugated 
with Alexa Fluor 488 (1:1,000 dilution) or Alexa Fluor 594 (1:1,000 
dilution). DAPI (Thermo Scientific) was used to mount the slides and 
microscopy imaging was done using a Leica CM 1950. Images for 
each channel were obtained using a 20× objective, and scale bars 
were inserted manually by the investigator.

5.4 | Metabolic studies

Multiple metabolic parameters including O2, CO2, food consump‐
tion, respiratory exchange ratio (RER), energy expenditure, and ac‐
tivity tracking were recorded using the Comprehensive Lab Animal 
Monitoring System (CLAMS, Columbus Instruments). For analysis 
of young 4‐week‐old female mice, mice were fed normal chow and 
housed in the metabolic chambers for 6 days. Data are represented 
as average values over the last 4 days. For longitudinal analysis of 
aging mice, mice were fed normal chow and acclimated to the meta‐
bolic chambers for approximately 24 hr prior to data collection, and 
data from a continuous 24 hr period were then selected for analysis 
as previously described (Yu et al., 2018). For analysis of diet‐induced 
obese mice, 6‐ to 8‐month‐old mice were singly housed for 4–7 days 
in home cages for acclimatization and then moved to the metabolic 
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chambers and maintained for 6 days on normal chow, followed by a 
switch to HFHS diet for 7–8 days with ad libitum access to food and 
water. On normal chow, data for both male and female mice are rep‐
resented as an average of 5 days (day 2 to day 6). For HFHS, data are 
represented as an average of all available days. For routine food in‐
take measurements, mice were singly housed and food was weighed 
once or twice a week in the home cage.

5.5 | Telemetry

Mice were implanted with telemetry transmitters (TA11PA‐F10, 
weight 1.6  g, Data Sciences International) in the peritoneal cavity 
for continuous monitoring of both core body temperature and home 
cage activity as described previously (Paschos et al., 2018; Yang et 
al., 2016). For telemetry monitoring, singly housed mice in home 
cages were placed in a ventilated, temperature‐controlled chamber 
with ad libitum access to food and water, with the exception of the 
indicated fasting period, during which they had access to water only.

5.6 | Body composition

Body composition was measured by magnetic resonance imaging 
(EchoMRI, Echo Medical Systems).

5.7 | Treadmill and running wheel

Treadmill performance was measured using an Exer3‐6 treadmill 
system (Columbus Instruments) as previously described (Frederick 
et al., 2015). Total distance run was defined as distance run before 
accumulation of 50 cumulative shock stimuli. Voluntary running 
was assessed using computer‐monitored running wheels (Columbus 
Instruments).

5.8 | Frailty and longevity

Frailty and longevity were assessed in a total of 116 RictorNkx2.1−/− 
mice and wild‐type (Rictorfl/fl) littermates of both sexes  (Table S2); 
two mice that died in close proximity to metabolic assessment were 
excluded from the analysis. Frailty was assessed longitudinally in a 
subset of mice starting at approximately 21 months of age using a 
26‐item frailty index based on the procedures defined by Whitehead 
et al. (2014). The items scored included alopecia, loss of fur color, 
dermatitis, loss of whiskers, coat condition, tumors, distended ab‐
domen, kyphosis, tail stiffening, gait disorders, tremor, body condi‐
tion score, vestibular disturbance, cataracts, corneal opacity, eye 
discharge/swelling, microphthalmia, vision loss, menace reflex, nasal 
discharge, malocclusions, rectal prolapse, vaginal/uterine/penile 
prolapse, diarrhea, breathing rate/depth, and piloerection.

5.9 | Operant task

The operant task experiment was performed in a conditioning cham‐
ber equipped with active (delivers food pellet) and inactive (does not 

deliver food pellet) levers as described previously (Alhadeff & Grill, 
2014; Betley et al., 2015). Ad libitum fed mice were trained to per‐
form the lever‐pressing task on a fixed ratio of one press per pellet 
(FR1) to obtain 20mg food pellets. This training was done overnight 
and followed sequentially by overnight training on FR3 and FR5 
schedules. Following training, mice were tested on exponential pro‐
gressive ratio (PR) schedule for either 1h during light period or over‐
night starting at dark period. The progressive ratio used followed the 
function of Fi = 5e^(0.2i) − 5, where Fi is the number of lever presses 
required to obtain the next pellet at i, the pellet number. Breakpoint 
analysis data are presented as number of pellets obtained before 
mice fail to press for a 10‐min period.

5.10 | Determination of insulin and plasma 
metabolites

Plasma insulin was measured using mouse insulin ELISA kit (ALPCO) 
according to the manufacturer's instructions. Plasma and tissue 
triglycerides were measured using the Infinity Triglyceride Assay 
kit (Thermo Scientific; TR22421). Plasma free fatty acids were as‐
sayed using a free fatty acid (FFA) kit (Sigma‐Aldrich; MAK044) or 
HR Series NEFA‐HR(2) (Wako Diagnostics). Plasma leptin was meas‐
ured using a leptin ELISA kit (EMD Millipore EZML‐82K). Plasma 
IGF‐1 was measured using a mouse IGF‐1 ELSIA kit (Crystal Chem, 
80574). Plasma T4 (Cortez Diagnostics; 3149‐18) and corticosterone 
(Invitrogen; EIACORT) were measured using ELISA kits.

5.11 | Glucose and insulin tolerance tests

Glucose tolerance tests were performed by fasting the mice over‐
night for 16 hr and then administering glucose (1 g/kg) intraperito‐
neally (Arriola Apelo et al., 2016; Fontana et al., 2016) or via oral 
gavage (2 g/kg). Insulin tolerance tests were performed by fasting 
mice for 5 hr or overnight for 16 hr, and then injecting human insulin 
intraperitoneally (0.75 IU/kg). Blood glucose was measured periodi‐
cally for 2 hr after administration of dextrose or insulin using either 
a Bayer Contour blood glucose meter and test strips, or a OneTouch 
glucometer and test strips.

5.12 | Gene expression

Total RNA was isolated from tissues using TRIzol reagent. RNA was 
reverse‐transcribed using High Capacity cDNA Reverse Transcription 
Kit (Thermo Fisher Scientific Cat# 4368814). qPCR was performed 
using an Applied Biosystems 7900HT system with SYBR green 
master mix (Applied Biosystems). Primer sequences used for qPCR 
were as follows: Rictor: F: ATGTGGCCAAATTGCAAGGAGTA, 
R: AACCCGGCTGCTCTTACTTCT; Actb: F: GGCTGTATTCCC 
CTCCATCG, R: CCAGTTGGTAACAATGCCATGT; Lep: F: CAGACAG 
AGCTGAGCACGAAA, R: CTGCACCCTATGTCACCATCA; Tbp: F: CC 
CCTTGTACCCTTCACCAAT, R: GAAGCTGCGGTACAATTCCAG. Pomc: 
F: CGCTCCTACTCTATGGAGCACTT, R: TCACCTACCAGCTCCCT 
CTTG; Agrp: F: AGGGCATCAGAAGGCCTGACCAGG, R: CATTG 
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AAGAAGCGGCAGTAGCACGT; Npy: F: ACCAGGCAGAGATATGGC 
AAGA, R: GGACATTTTCTGTGCTTTCTCTCATTA; Cart F: CCCGAGCC 
CTGGACATCTA, R: GCTTCGATCTGCAACATAGCG; Hcrt: F: GCCGT 
CTCTACGAACTGTTGC, R: CGCTTTCCCAGAGTCAGGATA; and Lepr: F: 
AGCTAGGTGTAAACTGGGACA, R: GCAGAGGCGAATCATCTATGAC. 
Rictor and neuropeptide expression in the hypothalamus was normal‐
ized to Actb, and LepB expression in adipose tissues was normalized 
to Tbp.

5.13 | Statistical analysis

Data are expressed as mean ± SEM Statistical analysis was conducted 
using Prism 7/8 (GraphPad Software). Significance was tested by 
Student's t test for two group comparisons or ANOVA followed by 
a Tukey or Sidak post hoc test as specified in the figure legends for 
comparisons of three or more groups. Survival analyses were con‐
ducted in R (version 3.5.0) using the “survival” package (version 2.38) 
(Therneau, 2015). Kaplan–Meir survival analysis was performed 
with log‐rank comparisons stratified by sex and genotype. Cox pro‐
portional hazards analysis was performed using sex and genotype 
as covariates. Alpha was set at 5% (p < .05 considered to be signifi‐
cant). The EE ANCOVA analysis done for this work was provided by 
the NIDDK Mouse Metabolic Phenotyping Centers (MMPC, www.
mmpc.org) using their Energy Expenditure Analysis page (http://
www.mmpc.org/share​d/regre​ssion.aspx).
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